S.	

EBNI

Page:

Project No.: 19-0001 Designed: AS

						Basem	ent Foun	dation Wall
STRUTTED B	ASEMENT WALL V5.04					Engineering Bu	ilding & Infra	structure Pty Ltc
Piers:	(Basement Foundation Wall) 600n	nm dia. piers at :	1450mm o	cts, 40MPa, 10	000mm excava	tion depth		
	25kPa surcharge, Ks =0.6, Ka.γ = 6							
	Refer analysis for pier design							
Wall:	100% pressure allowance on wall i	or arching						
	RL1018 (main wires in horizontal o	lirection) to spra	y wall, Ni	16-400 cts to w	all interface		01/ (0.20)	
	WI* = 8.8KNM < ØWUO = 22.7KNM	inforced cheers)					OK (0.39)	
	$V^{+} = 41.4$ kN < ϕ VUC = 42.8kN (Unre	enforced shear)			OK (0.97)			
	v* – 41.4kii < øvu – 562.0kii (iiite	fidee shear)					OK (0.07)	
Pier Geometry	(Strutted - Not Cantilevered)							
	Excavation de	epth (H) =	10000 r	mm				
	Pier cent	res (cts) =	1450 r	mm				
	Pier diame	ter (dia) =	600 r	mm				
	Concrete stren	gth (f'c) =	40 [MPa				
	Cover	to steel =	60 п	mm				
	Effective cover (Cover -	20mm) =	40 r	mm - Cl 4.10.3.	5			
	Exposure class	ification =	B1 7	Table 4.10.3.2 (Standard form	work)		
Geotechnical								
	Geotechnica	l report =						
	Lateral surchage co	oeff (Ks) =	0.6					
	Surcha	rge (W) =	25	кРа				
	Lateral earth pressur	e (Ka v) =	6.5	(Huniform				
	Anchor	friction =	100	kPa				
	Lateral socket	bearing =	1000	«Pa				
	Socket side friction =			кРа				
	Top proportion =			Proportion to f	full lateral pres	sure - refer diag	(ram)	
	% pressure for in	fill walls =	100 9	% (50% - 100%)				
Soldier pier pr	essure distribution (free draining) (No	ot for cantilever	distributio	on)				
	Working				·····	~~~~		
	Surphorgo - 1 K-*W	15 00 bb-					ŧ	0.20H
	Surcharge $p_1 = KS^*W =$				1	+	<u>}</u> -7	
	Earth pressure $p_2 = (Ra, \gamma) \cdot H =$	50.00 KPa			1 1		IT	
	iotal pressure pr – pr + pz –	75.00 KFa			1 1			
	Surcharge f1 = n1 * cts =	21.75 kN/m			1	2		0.80H
	Farth pressure $f^2 = p^2 * cts =$	87.00 kN/m			1 1			0.0011
	Total ft = $pt * cts =$	108.75 kN/m						
	Ultimate							
	Earth factor (elf) =	1.25 AS 46	78 - Cl 4.1			7 6		
	Live load factor (IIf) =	1.5 AS 46	78 - Cl 4.1		0.6W	6.0H		
	Surcharge f1* = llf * f1 =	32.63 kN/m			Sur <u>charge</u>	E <u>arth</u>	Total	
	Earth pressure $f^2 = elf * f^2 =$	108.75 kN/m			0.6W	6H		
	Total ft* = f1* + f2* =	141.38 kN/m		Working	15.00	60.00	75.00	kPa
					21.75	87.00	108.75	kN/m

Analysis for moment and deflection using other methods.

1.30

Ultimate

32.63

108.75

141.38

kN/m

Load factor (LF = Ult*/Working) =

øVus = τu*Ac =

562.0 kN/m

EBNI

Basement Foundation Wall

Engineering Building & Infrastructure Pty Ltd

OK (0.07)

Concrete strength (f'c) =	32	MPa		
Wall thickness (t) =	150	mm		
Bending reinforcement =	RL1018 (main	wires in horizo	ontal direction)	
Bar size =	9.5	mm		
Bar cts/No/mm ² =	100	mm		
Yield strength (fsy) =	500	MPa		
Reinf't ductility class =	L	(N)ormal,(L)ov	N	
Cover from basement face =	40	mm		
Steel area (Ast) =	709	mm²/m		
Depth to tensile steel from soil face (dsw) =	105	mm		
No. bars =	10.0			
Bar centres =	100	mm		
Exposure classification =	B1	Table 4.10.3.2	(Standard formwork)	
Design moment and shear				
Horizontal wall span (L) =	850	mm		
p.max = % pressure * lateral pressure =	75	kPa		
M* = p*.*L ² /8 =	8.8	kNm/m		
Reaction (R*) =	41.4	kN/m		
p* = p.max * LF =	97.5	kPa		
Bending capacity - Cl 8.1				
Minimum steel (Ast.min) =	290	mm²/m	Cl 9.1.1 & Cl 8.1.6.1	
alpha (α2 = 0.85-0.0015*f'c) =	0.802	(α2 ≥ 0.67)	Eq 8.1.3(1)	
gamma (γ = 0.97-0.0025*f'c) =	0.890	(γ ≥ 0.67)	Eq 8.1.3(2)	
kuo = fsy*Ast/(α2*f'cw*γ*dsw*bw) =	0.147			
ø = 0.65 =	0.650		Table 2.2.2(b)(ii) for L Class	
Design capacity (øMuo) =	22.66	kNm/m	Cl 9.1.1 & Cl 8.1.6.1	OK (0.39)
Dowels =	N16-400 cts			
Diameter =	16	mm		
Centres (cts) =	400	mm		
Yield strength (fsys) =	500	MPa (Class N)		
Steel area (Ast) =	503	mm²/m		
	Min. aggregate	e size of 10mm	for simplified shear - Cl 8.2.4.1	L
Unreinforced shear capacity -	Cl 8.2.4			
Strength reduction factor ϕ =	0.70		Table 2.2.2(e)	
do = t/2 =	75	mm		
Effective shear depth dv = max(0.72*D,0.9*do) =	108	mm	Cl 8.2.1.9	
Asv < Asv.min, kvo = 200/(1000+1.3*dv) =	0.175			
Asv < Asv.min, kv = min(kvo, 0.10) =	0.100		Cl 8.2.4.3	
vf'c =	5.66	MPa		
Vuc = kv*1000*dv*min(vf'c, 8.0) =	61.1	kN/m	Eq 8.2.4.1	
øVuc =	42.8	kN/m	Cl 8.2.1.6	OK (0.97)
Shear stress capacity - Cl 8.4.	3			
Strength reduction factor (øv) =	0.75	2	Table 2.2.2	
Horizontal steel area (Asf) =	503	mm ʻ	T.L. 0.4.0 (D. 11)	ь
Frictional constant (μ) =	0.7		Table 8.4.3 (Deliberately roug	(hened)
Cohesion coeff. (kco) =	0.4		Table 8.4.3 (Deliberately roug	gnened)
f'ct = 0.36*√f'c =	2.04	MPa	CI 3.1.1.3	
Permanant load normal to shear interface (gp) =	0	kN/m		
$\tau u = \mu^{*}[Ast^{*}tsys/(cts^{*}t+gp/t]+kco^{*}f'ct =$	3.75	мРа	CI 8.4.3	
τu.max = 0.2*f'c =	8.00	MPa	CI 8.4.3	
τu = min(0.2*f'c, 10, τu) =	3.75	MPa	1	

Spray wall

STRUTTED BASEMENT WALL V5.04

Project No.: 19-0001 Designed: AS

Page:

Tweed Heads

EBNI

Page: Project No.: 19-0001

Designed: AS

STRUTTED BASEMENT WALL V5.04

Basement Foundation Wall Engineering Building & Infrastructure Pty Ltd

Socket resistance						
Working reaction (R) =	250 kN horizontal reaction at toe					
Socket depth (d) =	1000 mm					
Wedge calculation method =	W (W)edge,(A)ngle,(C)ustom					
Wedge area of plane (A = $4.5*d^2+2.25*d*dia$) =	3.20 m ² (Approx. 1 to 2, or 27°, failure wedge angle)					
		Adopt A =	3.20 m²	Trimmed		
Case 1 (Shear across coated plane) = R/A =	78.0 kPa ≤	80 kPa	OK (0.98)			
Case 2 (Shear across 50% jointed rock plane) = 2*R/A =	156.0 kPa ≤	160 kPa	OK (0.98)			
Case 3 (Lateral Bearing) = R/(dia*sd) =	416.7 kPa ≤	1000 kPa	OK (0.42)			
Vertical load resistance =	848.2 kN (End bearing and side friction)					
Anchors						
Anchor friction =	100 kPa					
Anchor reaction (T) =	500 kN (horizontal - working)					
Anchor declination to horz. (horz) =	15 ° (0° \leq angle \leq 45°)					
Anchor diameter (adia) =	100 mm					
Anchor capacity =	31 kN/m					
Required pullout =	518 kN					

16.5 m

Estimated anchor length =

