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Abstract  
Following the building of the first contemporary cable-stayed 
bridge, the Swedish Stromsund Bridge, in 1955, structural 
engineers began to take an interest in the idea and real-world uses 
of cable-stayed bridges. Cable-stayed bridges are more rigid and 
use less material than suspension bridges, particularly for the stay 
cables and abutments. Cable-stayed bridges with main span 
lengths greater than 1000 meters are entering a new era thanks to 
recent developments in design and construction techniques as 
well as the availability of high-strength steel cables (Hassan 2010) 
Cable-stayed bridges represent a major innovation in long-span 
bridge engineering, offering efficiency, aesthetic appeal, and 
structural resilience. This paper explores the design principles, 
mechanical behavior, material properties, and optimization 
methods involved in the development and analysis of cable-stayed 
bridges. Special attention is given to stay cable configurations, 
post-tensioning strategies, anchorage systems, and advanced 
failure analyses including non-linear and pushover techniques. A 
comprehensive literature review, analytical modeling, and 
practical design recommendations are provided to support future 
bridge truss system design and safety. 
 

Components and types of cable stayed 
bridges 
 
The most prevalent configurations for stay cables are the harp, fan, 
and semi-fan arrangements, as illustrated in Fig. 1 (Anon n.d.). For 
bridges with extensive spans, the harp layout is generally 
considered less appropriate, as it necessitates a higher pylon and 
generates substantial forces within the stay cables. The fan 
pattern, while suitable for moderate spans with fewer stay cables, 
becomes problematic for larger structures due to the increased 
weight of anchorages and difficulties in accommodating them as 
the number of cables grows. The semi-fan pattern emerges as the 
optimal choice, offering a middle ground between the harp and fan 
designs. By combining the strengths and mitigating the 
weaknesses of both arrangements, the semi-fan pattern has been 
widely adopted in contemporary cable-stayed bridges. A prime 

example is the Sutong Bridge in China, which boasts the world's 
longest cable-stayed main span at 1088 m. 

 
Figure 1: Different component of cable stayed bridge 
 
The composite steel-concrete deck is a widely adopted system in 
cable-stayed bridge design and construction. This configuration 
features a deck comprising two structural steel edge girders linked 
by transverse steel floor beams, which support a precast reinforced 
concrete slab, as illustrated in Figure 2. The benefits of these 
composite decks include: 
 
1. Cost-effectiveness of the concrete roadway slab compared to 
steel orthotropic decks. 
2. Reduced redistribution of compression forces onto steel girders 
due to shrinkage and creep, achieved through the use of precast 
slabs. 
3. Enhanced rotational resistance attained by anchoring stay 
cables to the exterior steel main girders. 
4. Ease of construction for the relatively lightweight steel girders 
prior to the addition of the heavier concrete slab. 
5. Significantly lower dead weight compared to a full concrete 
deck. 
 
Consequently, composite decks have been employed in numerous 
cable-stayed bridges worldwide, such as the Quincy Bayview 
Bridge in the USA, Annacis Island Bridge in Canada, and Qingzhou 
Bridge in China (Sung et al. 2006)and (Ren & Peng 2005). 
 

 
Figure 3: Illustration of bridge deck  
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Cable-stayed bridges employ inclined stay cables that are 
post-tensioned to counteract the deck's dead load. This 
post-tensioning is applied to minimise both vertical deck 
deflection and lateral pylon deflection along the bridge's 
longitudinal axis. The combined effect of dead and 
post-tensioning cable forces results in a deck bending moment 
equivalent to that of a beam on continuous rigid supports at 
cable-deck connections, while pylons function as pure axial 
members. Post-tensioning cable forces influence internal force 
distribution and overall bridge design, making them a crucial 
design parameter for effective bridge construction. 
 
Determining the optimal distribution of post-tensioning cable 
forces is considered one of the most challenging aspects of 
cable-stayed bridge design. The trend towards longer span bridges 
necessitates a greater number of stay cables, increasing bridge 
redundancy and complicating the optimisation process (Lee et al. 
2008). From a mathematical perspective, the problem of 
evaluating optimal post-tensioning cable forces may not yield a 
unique solution (Sung et al. 2006). 
 
Four methods have been developed to determine post-tensioning 
cable forces in cable-stayed bridges. These approaches aim to 
either minimise vertical deck deflections to a convergence 
tolerance or achieve a bending moment diagram along the deck as 
if it were supported on simple rigid supports at cable locations. 
(Wang et al. 1993) proposed the zero displacement method to 
determine post-tensioning cable forces and the initial bridge 
profile under dead load. This iterative process begins by assuming 
zero tension in stay cables and seeks an equilibrium position with 
zero deck deflections. Although the initial configuration satisfies 
equilibrium conditions, it does not result in zero deflections. 
Therefore, the process is repeated using the previously determined 
cable forces as initial values until the convergence tolerance is 
achieved at selected deck locations. However, this method is 
known for slow convergence and requires significant 
computational effort (Kim & Lee 2001). 
 

Types of post tensioning cables stay 
In general, the stay cables' steel composition is different from 
structural steel because it has a higher carbon content. Although 
structural steel has a carbon content of 0.15 to 0.20%, (Gimsing & 
Georgakis 2011) found that the material utilized to make the stay 
cables had a carbon concentration of 0.80%. The stay cable 
material has a tensile strength of roughly 1800 MPA, which is 
roughly four times that of mild structural steel (370 MPA), due to 
its increased carbon content. Additionally, it has a tensile strength 
of 790 MPA, which is more than twice as strong as that of 
structural steel. 
 
The stay cable material's tensile strength, which is roughly 1800 
MPA, is nearly four times that of mild structural steel (370 MPA) 
because of its increased carbon content. Additionally, its tensile 
strength (= 790 MPA) is more than double that of the high strength 

structural steel. A discernible reduction in ductility compensates 
for the gain in tensile strength. The stay cable material has an 
elongation of 4% at the breaking point. The elongation at the 
breaking point of mild structural steel and high strength 
structural steel can reach values of 24% and 18%, 
respectively(Gimsing & Georgakis 2011). 
The types of cables usually used for cable supported bridges are: a- 
Parallel-bar cables. b- Locked coil strand cables. c- Parallel-wire 
cables. d- Parallel strand cables. 

a.​ Parallel bar cables  

Steel threaded parallel-bar cables (fig. 2.1) are typically available in 
sizes of 16, 19, 25, 32, 36, 43, and 57mm. (Walther et al. 1999) 
reported that bars with widths up to 16mm are delivered in reels, 
whereas those larger than 16mm are delivered in straight lengths 
of 15 or 20m. To maintain bar continuity with diameters over 
16mm, use couplers. These cables have an elastic modulus of 
210000 and an ultimate strength range of 1030-1470 𝑁/𝑚𝑚2  𝑁/𝑚𝑚2

. Stay cables manufactured from stressed bars have a bigger cross 
section due to their lower ultimate strength compared to other 
wires utilized in their fabrication. However, larger cross sections 
reduce stress fluctuations and improve stay cable fatigue strength. 
Refer to figure 4 for stressing bars mounted in metal ducts, held in 
place by polyethylene spacers and parallel to each other. The 
longitudinal sliding of the bars allows for individual straining of 
the steel bars. Cement grout is typically injected into the voids 
inside metal ducts around steel bars after tensioning all bars. The 
cement grout injection protects steel bars from corrosion and 
helps bear some live loads.   
 

 
Figure 4: Parallel bar cables (Walther et al. 1999) 

b.​ Locked coil strand cables 

A variety of wire cross sections are employed in the locked coil 
strand to create a strand with a sleeker and more compact surface. 
The locked coil strand will typically consist of a nucleus of a 
standard helical strand, which is composed of round wires. The 
core is surrounded by one to several layers of wedge-shaped wires, 
while the peripheral layers are composed of wires with a unique 
S-shape figure 5. The S-shape layer creates an envelope that is 
somewhat water-tight, which is why they are referred to as 
"Locked Coil Cables" . These strands are produced by rotating 
successive wire layers in a manner that is generally in opposition 
to the direction of the helix. The stiffness of the multi-wire strands 
decreases more than that of the seven wire strands due to the 
reduced pitch. The nominal elastic modulus of the multiwire 
helical strand is approximately 15-25% lower than that of straight 
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wires (Gimsing & Georgakis 2011). Typically, the elastic modulus of 
these types of filaments is 170,000 . The elongation of a 𝑁/𝑚𝑚2

helical strand will be a result of the elastic strain in the wires and 
an irreversible elongation caused by the strand's compaction when 
the initial loading is applied. In order to eliminate this non-elastic 
elongation, a pre-stressing procedure is implemented to ensure 
that the strand behaves in a nearly ideal elastic manner in the final 
structure. The diameters of the secured coil strands typically range 
from 30mm to 150mm. The greatest diameters of locked coil 
strands are employed in cable-stayed bridges, where a stay cable 
may consist of a single strand. In situations where the ultimate 
cable is composed of multiple strands, the smaller diameters (60 to 
80mm) are employed. In contrast to other types of stay cables, stay 
cables with locked coil strands are installed without external 
conduits or grouting. Consequently, they must be fabricated with 
extreme care to ensure the corrosion protection of all of their 
wires. 

 
Figure 5:  Locked coil strand 

c.​ Parallel wire cables 

They are clusters of 7mm wires see figure: . The number of wires 
in each bundle varies from 50 to 350. The utmost strength of the 
wires in these cables is 1670 . This suggests that a single 𝑁/𝑚𝑚2

wire can sustain 6.5 tons, whereas a bundle of 300 wires can 
support 1950 tons. 
The elastic modulus of these cables is approximately 205,000 

, which is marginally lower than that of parallel bar cables. 𝑁/𝑚𝑚2

Stay cables with parallel wires have been found to be capable of 
withstanding stress variations of 350-400  over 2 million 𝑁/𝑚𝑚2

cycles, with a maximum stress of 750 , which is equivalent 𝑁/𝑚𝑚2

to 45% of the cable's complete length before it is delivered to the 
erection site. The utmost projected load for the life of a stay cable is 
typically 1.5 times the test jacking load.  

d.​ Parallel strand cables 

They are made up of groups of strands. The strand typically 
consists of seven 5mm wires. These strands are easiest to find in 
cable-supported bridges. They are currently commonly employed 
as tendons in prestressed concrete buildings. The seven-wire 
strand has a 5mm wire core and a layer of six wires, with a 
nominal diameter of 15mm and a cross sectional area of 150 𝑚𝑚2

(see figure 4). Each of the six wires encircling the core wire has the 
same pitch and helix direction. A large pitch results in a modest 
inclination of the wire axis relative to the strand axis. The rigidity 
of the seven-wire strand is comparable to that of straight wires. 
The nominal elastic modulus of a seven-wire strand is typically 

5-6% lower than that of wires. These cables typically have an 
elastic modulus of 195000  (Gimsing & Georgakis 2011). 𝑁/𝑚𝑚2

According to international norms and requirements, stay cable 
systems should be tested for fatigue strength. 

 
 Figure 5: Anchorage components of parallel strand stay cable 
 

 
Figure 6: Isotension schematic diagram of anchors behind 
concrete(Leonhardt & Zellner 1980). 
 
Existing post-tensioning optimisation techniques typically focus 
on achieving one of two outcomes. The first involves restricting 
the bridge deck's vertical deflections to a specified tolerance value. 
The second aims to produce a bending moment diagram along the 
deck that simulates the deck resting on simple rigid supports at 
cable points. However, attaining these desired deck conditions 
may sometimes result in either excessive bending moments in the 
pylons, surpassing imposed limits, or disproportionately large 
cable forces. Consequently, there is a pressing need to incorporate 
pylon behaviour into the optimisation process. The current 
method's objective function simultaneously minimises transverse 
deflections of both the deck and pylon tops. This approach leads to 
a reduction in bending moment distributions along both the deck 
and the pylon. 

Ratio between side span and main span length  
The structural system's overall stability is primarily guaranteed by 
the backstays of contemporary cable-stayed bridges. In the event 
that the main span is under active load, they assist in stabilizing 
the tower's tip by relocating it toward the side span. The backstay 
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forces are increased by the active load q on the main span (see 
figure 7). The backstay forces are reduced to their minimum level 
when the live load q occupies only the side span (see figure 7). In 
comparison to all other cables, the backstays typically experience 
the most significant tension variations/amplitudes. Their 
dimensions must be designed to ensure that the aforementioned 
stress variations are safely contained below their fatigue strength. 
The following equations can be derived by disregarding the 
bending stiffness of the deck and presuming that all stay cables 
intersect at the top of the tower head, as shown in figure 7 
(Gimsing & Georgakis 2011) 

 

 
Figure 7:  Load case for maximum and minimum back stay forces  
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Figure 8: Relationship between the live load and the dead load and 
the ratio of the lateral span to the main span (Gimsing & Georgakis 
2011). 

Stiffness of stay cables 
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Figure 8: Effect of the stay cable sag on its elastic modulus 
(Gimsing and Georgakis 2011) 

Different structural supporting systems bridge 
components.  
 

  

 
Figure 9: Figure showing different structural supporting systems 
of cable stayed bridges and back stayed bridges. 
 

The supporting system impacts how towers, stay cables, and decks 
in a normal cable-stayed bridge support self-weight and external 
loads. Cable-stayed bridges are shown in Figure 9. Cable-stayed 
bridges originally had a few stay cables supporting a rigid deck . 
Only thin towers above the deck level are needed to support the 
vertical component pressures from the few stay cables and 
minimal bending moments (Leonhardt & Zellner 1980). Figure 9 
(a) lacks backstays to connect the tower tip to the rigid end 
support. 
The narrow deck and back stays of the bridge in figure 9 (b) 
connect the tower apex to the stiff end supports, which 
longitudinally stabilize the towers. Rocker bearings' upper ends 
are hinged to the deck. All hinge at the bottom. 
These rocker bearings support backstay vertical forces and deck 
horizontal movement. A horizontal element This structure 
balances horizontal stay forces on the main span side by 
supporting the back stays on the deck. Temperature, shrinkage, 
creep, and live loads shift the deck longitudinally. As the deck 
moves at its top ends, rocker bearings spin around their bottom 
hinges. Match rocker bearing height to motion magnitude to avoid 
deck-bearing restrictions. 
The bridge in figure 9 (c) features firm towers. Not like the bridge 
in figure 9 (b), this tower does not need back-stays. The bridge in 
figure 9 (d) features an extension joint in the center of its main 
span, unlike others. The bridge deck is linked to terminal supports, 
although backstays are external. (e) illustrates a bridge with a 
supporting system like (d), but the deck has two expansion joints 
near the towers. Figures 9 (b) and (c) show a bridge deck that can 
move longitudinally or be securely attached to one tower. If the 
side spans are short and/or the towers are flexible and tall, figures 
9 (d) and (e) bridge decks can only be joined longitudinally. 
Avoiding high tower-deck restraining pressures requires this 
strategy. Under dead load, bridge decks in figures 9 (a) to (d) 
experience compression normal forces, while deck (e) experiences 
tension normal pressures. Steel decks work best for figure 9(e). 
(Hassan 2010) cite F. de Miranda's Arno bridge design. 
 

Analysis of mechanical behaviour of cable-stayed bridge.  

Mathematical background  

A mathematical model for the deformed structure's shape is the 
basis of the observed cable-stayed bridge analysis method. The 
equations show how element strains affect deformations. Forces 
acting on the stiffening girder (e.g., support reactions, cable 
tension forces, dead load, varying loads) are sensed separately, but 
the entire system state is determined via superposition (Straupe & 
Paeglitis 2012).For a statically unknown beam, the differential 
equation (1) of the deformed axle shape is solved using unknown 
reaction forces at the elastic support points:  
 

 (1) 𝐸
𝑠
𝐼𝑦''(𝑥) = 𝑀(𝑥) 𝑤ℎ𝑒𝑟𝑒:  𝑦(𝑥) = 𝑎𝑥𝑙𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 ,

 𝑀(𝑥) = 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚
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 (2) 𝑃 = [𝑀
𝑃0

(𝑑, 𝑥)−1]. [− 𝑀
𝑟𝑒𝑞

(𝑥) − 𝑀
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 Bending moment diagram caused by unit force at a 𝑀
𝑃0

(𝑑, 𝑥) =

distance d  Bending moment diagram due to dead load  𝑀
𝑑
(𝑥) =

point load.  𝑃
0

=  

System geometry:   

Describing the bridge segmentation for back stayed bridge.  
A cable-stayed bridge with three symmetrical spans will be seen. 
While the back span (80 m) is divided into 8 panels, the central 
span (260 m) is divided into 21 panels. Thus, each pylon supports 
ten cables for the central span, but only seven cables support the 
back-spans (see Figure 10). Anchoring the three cables that are still 
in this example to the large supports that are located at the 
extremities of the bridge will be done. The pylon is supposed to be 
balanced, and these three wires are supposed to accomplish such. 
The cables are fully regulated (pre-stressed) to obtain the desired 
deformed shape of the stiffening girder. 
 

Role of cables in stiffening girder  
Before (Straupe & Paeglitis 2011), the optimal division of girders 
into panels is addressed. The same task has been resolved for any 
arbitrary panel length, and the requisite cable tensile forces have 
been determined to ensure that the utmost positive and negative 
bending moments within each individual panel are the same 
absolute value. 
The number of cables in each span is one less than the number of 
panels. In the combined model, the equation system for optimal 
cable forces (i.e. elastic support responses) has more unknowns 
than equations (Kachurin et al. 1971). The goal of minimizing the 
bending moment value of a stiffening girder at rigid supports 
(pylons) is not an appropriate approach. Tendons should be used to 
prestress these regions in order to mitigate the tensile tensions. In 
practice, this solution is typically required for the cantilever 
construction method. 
The system of equations is solved to determine the necessary cable 
tensile forces. The bending moment diagram of the strengthening 
girder from cable tension forces is depicted in Figure 10, which is 
the most suitable for the bridge's observed system. The height of 
the pylons is selected to ensure that the inclination angle of the 
longest cable is 25°. 
In order to compare the tensile forces in cables, as well as the axial 
forces and compressive tensions in the girder of different system 
modifications, it is necessary to make the aforementioned 
assumptions (Juozapaitis & Norkus 2007). Two methods of 
erection of the stiffening girder are observed: the first involves the 
use of temporary supports, which are then used to add cable forces 
after the entire girder is joined (Lozano-Galant et al. 2012). The 
second method involves the use of cantilevers, which are used to 
add cables in a progressive manner. 

It is important to mention that the first option generates an axial 
tensile force in the girder during the middle portion of the central 
span. However, the second option eliminates the negative tensile 
force altogether.   

Mathematical modelling  

Deflection due to uniformly distributed load 
The deformations of each cable caused by the allocated load 
determine the strains in the stiffening girder of a cable-stayed 
bridge. By studying the deformed geometry of the system, it is 
possible to calculate the non-linear problem of determining the 
forces in cables and how they affect the stiffening girder. The first 
step is to determine how a straightforward beam with elastic 
supports deforms when the dead weight is evenly distributed. 
The authors of this publication are currently engaged in research 
about the interaction between the cables and stiffening girders of 
cable-stayed bridges, as obtained analytically (Straupe & Paeglitis 
2011. These formulas illustrate the effects of geometric and 
mechanical characteristics on the system's stresses and 
deformations. This will enable the use of the Final Element 
Method (FEM) to make an appropriate initial assumption of these 
components for subsequent analysis. 

 
Figure 10: cable-stayed bridge diagram 
 

 (1) 𝑦(𝑥) = 𝑞
24𝐸

𝑠
𝐼 (2𝐿𝑥3 − 𝑥4 − 𝐿3𝑥)

Deflection due to the symmetrical applied unit forces 
 

 
Figure 11: Bending moment diagram due to symmetrical vertical 
forces.  
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Using differential equations (see figure 11), the three sections of the 
corresponding deflection can be found through the three sections 
with different equations of bending moments as following:  
 

 (2) 𝑦
1
(𝑥) = 1

𝐸
𝑠
𝐼 ( 𝑥3

6 + (𝑧2−𝐿𝑧)𝑥
2 )

 (3) 𝑦
2
(𝑥) = 𝑧

𝐸
𝑠
𝐼 ( 𝑥2

2 − 𝐿𝑥
2 + 𝑧2

6 )

 (4) 𝑦
3
(𝑥) = 1

𝐸
𝑆
𝐼 ( (𝑥−𝐿)3

6 + (𝑧2−𝐿𝑧)(𝑥−𝐿)
2 )

 
The stiffening girder's bending moment diagram depends on the 
vertical forces acting on the cable support points. However, the 
size of these forces is contingent upon the degree to which the 
cable undergoes deformation (elongation) as a result of the load 
that is being applied. The cable extension is contingent upon the 
material's Young's modulus, cross-sectional area, and length 
(Walther et al. 1999). 
 

 (5) 𝑁
0

= 𝑞(2𝐿𝑧3−𝑧4−𝐿3𝑧)
24𝐸

𝑠
𝐼𝐿

𝑣

𝐸
𝑣
𝐹 −12𝑧3+12𝐿𝑧2

  𝐿
𝑉

= 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒 (𝑚),  𝐹 = 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 (𝑚2)

 𝐸
𝑣

= 𝑦𝑜𝑢𝑛𝑔'𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 (𝑘𝑁/𝑚2)

 𝑓 = 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒 (𝑚) 𝑁
0

= 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠 

 

 
Figure 12 : Bending moment diagram depending on the stiffness 
support (Walther et al. 1999). 
 

,  (6) 𝑁
0

=
−𝑀

𝑞
(𝑧)−𝑀

𝑞
𝐿
2( )

𝑀
1
(𝑧)+𝑀

1
( 𝐿

2 )
(5) 𝑖𝑛𝑡𝑜 (6) → (7) 𝐸

𝑣
𝐹

𝑒
=

6𝐸
𝑠
𝐼𝐿

2𝐿𝑧4−𝑧5−𝐿3𝑧2

𝑧2−𝐿𝑧− 𝐿2

3

+4𝑧3−3𝐿𝑧2

Displacement of anchorage point can be written as: 

 , when a cable with real (8) 𝑓 =
𝑁

0
𝐿

𝑣

𝐸
𝑣
𝐹

𝑒
= 𝑁

0
𝐿

𝑣

2𝐿𝑧4−𝑧5−𝐿3𝑧2

𝑧2−𝐿𝑧− 𝐿2

4

+4𝑧3−3𝐿𝑧2

6𝐸
𝑠
𝐼𝐿

is chosen , the correlation can be written as :  𝐸
𝑣
𝐹 

 (9) 𝑓 + ∆ =
𝑁

0
𝐿

𝑉

𝐸
𝑣
𝐹

 
Figure 13: symmetrical deformation of inclined cables (Walther et 
al. 1999).  
 
The incline of the cable can be considered by determining an 
appropriate for the cable. This value corresponds to the 𝐸

𝑣
𝐹

𝑠

stiffening girder's deflections that were previously determined. 
The elongation  and the tensile force  of an inclined cable can ∆𝑙 𝑁

𝑠

be determined as follows: 

,  (10) ∆𝑙 =
𝑁

𝑠
𝐿

𝑣

𝐸
𝑣
𝐹

𝑠
(11) 𝑁

𝑠
=

∆𝑙𝐸
𝑣
𝐹

𝑠

𝐿
𝑉

(12) ∆𝑙 = (ℎ + 𝑓)2 + 𝑧2 − 𝐿
𝑣

 (13) 𝑠𝑖𝑛α = ℎ+𝑓
𝐿

𝑣
+∆𝑙 =

𝑁
0

𝑁
𝑠

=
𝑓𝐸

𝑣
𝐹𝐿

𝑣

ℎ∆𝑙𝐸
𝑣
𝐹

𝑠

 (14) 𝐸
𝑣
𝐹

𝑠
=

𝑓𝐸
𝑣
𝐹𝐿

𝑣
(𝐿

𝑣
+∆𝑙)

ℎ∆𝑙(ℎ+𝑓) =
𝑓𝐸

𝑣
𝐹𝐿

𝑣
(ℎ+𝑓)2+𝑧2

ℎ( (ℎ+𝑓)2+𝑧2−𝐿
𝑣
)(ℎ+𝑓)

   𝑤ℎ𝑒𝑟𝑒 𝐿
𝑣

= ℎ2 + 𝑧2 (15) 𝑁
𝑠

=
∆𝑙𝐸

𝑣
𝐹

𝑠

𝐿
𝑣

=
𝑓𝐸

𝑣
𝐹 (ℎ+𝑓)2+𝑧2

ℎ(ℎ+𝑓)

Symmetrical cables in pair solution  
 

 (17)  𝑦(𝑧
1
) + 𝑁

1
(𝑦

11
(𝑧

1
) −

𝐿
𝑣1

𝑅
𝑣
𝐹

1
) + 𝑁

2
𝑦

12
(𝑧

1
) +.... + 𝑁

𝑛
𝑦

1𝑛
(𝑧

1
) = 0

  𝑦(𝑧
2
) + 𝑁

1
𝑦

21
(𝑧

2
) + 𝑁

2
(𝑦

12
(𝑧

2
) −

𝐿
𝑣2

𝐸
𝑣
𝐹

2
) + 𝑁

3
𝑦

13
(𝑧

2
) +.... + 𝑁

𝑛
𝑦

1𝑛
(𝑧

2
) = 0

  ....

  𝑦(𝑧
𝑛
) + 𝑁

1
𝑦

21
(𝑧

𝑛
) + 𝑁

2
𝑦

22
(𝑧

𝑛
) + 𝑁

3
𝑦

23
(𝑧

𝑛
) +... + 𝑁

𝑛
(𝑦

1𝑛
(𝑧

𝑛
) −

𝐿
𝑣𝑛

𝐸
𝑣
𝐹

𝑛
) = 0

 
The maximum and minimum absolute values of the bending 
movement of the outer section can be determined using the 
parabolic equation for the graph depicted in the accompanying 
figure. The optimal span can be determined as the following 

 𝑏 = 0. 85𝐿
0
𝑚 = 0. 85𝐿

0
− 0. 5𝐿

0
= 0. 35𝐿

0
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Figure 14: Bending moment diagram of the outer section  
 

Practical Example 
The cable-stayed bridge's parameters can be selected and their 
interaction can be investigated using analytical expressions that 
have been previously discovered. The FEM program should 
perform the final calculations to ensure that the data acquired is in 
accordance with the selected criteria (Bruer et al. 1999). The FEM 
program has randomly verified the following, and a strong 
correlation has been identified. 
The equations (17) and methodology that have been established 
should be estimated and their accuracy should be verified using 
this example. Consequently, certain factors were not taken into 
account, such as the cable sag effect and the deformations of 
pylons from the moving masses, which are the subjects of further 
investigation for this method. 
Figure 15 illustrates the cable-stayed bridge system that was 
analyzed. The pylons are initially adopted by the points of the 
diagrams provided. 

 
Figure 15 : Deformed shape of the cable-stayed bridge.  
 
height h = 50 meters. The span, which has a length of 231 meters, 
is divided into seven sections. The paper does not explicitly 
address the cross-sectional geometry and loads of the structures, 
as they are not the subject of the paper. At first, the stiffening 
girder is designed using the following parameters: 
- the second moment of area of the stiffening girder:  𝐼 = 41. 74 𝑚4

- the Young's modulus of the stiffening girder: The stress  is 𝐸
𝑠

equal to 36 GPa, and the normally distributed load . 𝑞 = 1300 𝑘𝑁/𝑚

In accordance with the assumptions outlined above, the stiffening 
girder is partitioned into sections: 

, 𝑏
2

= 𝐿
2×0.85+5 = 231

6.71 = 34. 44 𝑚

 𝑏
1

= 0. 85𝑏
2

= 0. 85 × 34. 44 = 29. 39 𝑚 

  𝑀
𝑝

= 𝑀
𝑛

=
𝑀

𝑙𝑜𝑎𝑑
( 𝐿

2 ) −𝑀
𝑙𝑜𝑎𝑑

( 𝐿
2 −

𝑏
2

2 )

2 = 96. 38 𝑀𝑁𝑚

 
Table 1: Bending moments in the specific points   

 𝑥 (𝑚)  𝑀
𝑙𝑜𝑎𝑑 

(𝑀𝑁𝑚) 𝑀
𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 

(𝑀𝑁𝑚  𝑀
𝑠𝑢𝑚 

(𝑀𝑁𝑚)

 0. 0  0  0  0

 12. 2  1731. 97  − 1635. 59  96. 38

 29. 4  3852. 27  − 3948. 65  − 96. 38

 46. 6  5587. 08  − 5490. 7  96. 38

 63. 8  6936. 36  − 7032. 74  − 96. 38

 81. 1  7900. 14  − 7803. 76  96. 38

 98. 3  8478. 4  − 8574. 78  − 96. 38

 115. 5  8671. 16  − 8574. 78  96. 38

 
 
 
 
Table 2: Cable parameters 

 𝐶𝑎𝑏𝑙𝑒 𝑁𝑜  𝑁
0
 (𝑀𝑁)  𝑓 (𝑚𝑚)  𝑁

𝑠
(𝑀𝑁)  𝐸

𝑉
𝐹

𝑠
(𝑀𝑁)

 1  44. 77  56. 67  51. 92  61 638

 2  44. 77  102. 62  72. 52  92 877

3  44. 77  125. 59  98. 54  19 0618

 
,𝑁

0 
𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑓𝑜𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

, 𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡  𝑜𝑓 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑜𝑓 𝑔𝑖𝑟𝑑𝑒𝑟 
,  𝑁

𝑠
 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑖𝑠 𝑐𝑎𝑏𝑙𝑒 𝐸

𝑣
𝐹

𝑠
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 𝑐𝑎𝑏𝑙𝑒
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Figure 16: vertical displacement  of anchorage point of cable 𝑓(𝑚𝑚)
and vertical component of depending on the stiffness of 𝑁

0
(𝑀𝑁)

the girders (Straupe & Paeglitis 2013). 

 
Figure 16 : stiffness of the inclined cables with respect to 𝐸

𝑣
𝐹

𝑠
(𝐺𝑁) 

displacement , and Bending moments with respect to 𝑓(𝑚𝑚)
stiffness of the stiffening girder (Straupe & Paeglitis 2013).   
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Figure 17: Maximum positive and negative bending moments with 
respect to the stiffness of cables, and required values of stiffness of 
cables with respect to girder stiffening (Straupe & Paeglitis 2013).  
 
The analysis of stresses in the stiffening girder concludes that the 
portion of the span that is situated closer to the pylons is in a more 
advantageous position due to its higher axial compression force, 
which reduces or entirely eliminates the tensile stresses caused by 
the bending moment. A logical objective conducted by (Bruer et al. 
1999) is to reduce the bending moments in the midsection of the 
central span, where the stiffening girder is located, and the axial 
compression force is lower. 
 
The mathematical model is enhanced to reduce the tensile 
tensions in the stiffening girder. In areas where it is desirable to 
reduce the bending moments, it can be accomplished by 
minimizing the distance between the cable anchor-points. The 
optimal solution is determined by introducing a parameter dx [m], 
which denotes the length difference between two adjacent panels. 
The bending moments M, axial forces NG, and stresses σ in the 
upper and lower fibers of the cross-section of the strengthening 
girders of two systems are compared in Fig. 4. The left panel has a 
constant length (parameter dx = 0 m), while the right panel has a 
variable length (dx = 1,0 m). In this instance, temporary supports 
are employed to achieve erection.  

 
Figure 18: Bending moment diagrams , axial force  and (𝑀) (𝑁

𝐺
)

stress  for cable-stayed bridge modification systems(Straupe & (σ)
Paeglitis 2013). 

 
Figure 19: The axial force diagrams in stiffness girder  and (𝑁

𝐺
)

stress  for two modifications of bridge system (Straupe & (σ)
Paeglitis 2013) 
 
The separation into panels changes the strains developing in a 
stiffening girder. Improved positioning of cable anchors produced 
tensile forces and stresses that indicate events on right sides of 
Figures 4 and 5. Almost completely avoiding tensile stresses is 
made possible by the best partition of stiffening girder into panels 
(Straupe & Paeglitis 2013). 
The analysis chart in Figure 19 and 20 illustrates the maximum 
tensile stresses in the central span, which are contingent upon the 
parameter dx. Stress peaks in the rigid support area at the pylons 
are not addressed in this section, as they must be prevented 
through pre-stressing. 

Coordination of tensile forces in cables  
The tensile forces of the shortest cables (those closest to the 
pylons) are lower (line No. 1 in both graphs shown in Fig. 7), while 
the tensile forces of the longer cables are higher (line No. 7 for the 
back-span and line No. 10 for the central span) when the girder is 
divided equally into panels (i.e. parameter dx = 0). The tensile 
forces in Fig. 7 are demonstrated to increase as the parameter dx is 
increased. The charts demonstrate that the parameter dx has an 
optimal value, which results in tension forces in all cables at 
approximately the same levels. In this scenario, the stresses in all 
cables will be consistent, which is a substantial accomplishment in 
terms of the durability of the cables.In order to unify forces in all 
cables, the optimal value of parameter dx is approximately 0.4 m in 
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the example provided.This value is not best for stiffening girder 
tensile stress reduction. Therefore, a compromise must be 
reached.Forces in longer connections tend to decrease while those 
in shorter cables tend to increase. This consistency is applicable to 
all cables within the system.  

 
Figure 20: Cable tensile forces based on the distance between 
anchor points (dx) reduction parameter: Three back-span cables 
(shortest cable number 1; longest cable number 7) 

The effect of variable loads on the anchor heads  
Bending moment values must be set for each moving load point. 
This supposition can be proven by considering that the moment 
difference between the maximum positive moment (located in the 
node where the load is located) and the negative moment (located 
at the end of the panel, in the node where the cable is anchored) for 
each panel is a constant. 
 

 
Figure 21: Minimum bending moment in every central section 
span.  
 

 is the coordinate of the point load's starting in the panel, and  𝑏
𝑧1

(𝑧)

 is the coordinate of the point load's ending in the panel. 𝑏
𝑧2

(𝑧)

The introduction of an "intelligent" cable adjusting system can 
achieve the bending moment with the least possible extreme 
values caused by variable loads. This system functions as a group 
of mechanisms that monitor the displacements of certain nodes 
and adjust separate cables based on the location and action of the 
variable loads. 
 

 (3) 𝑀
𝑚𝑖𝑛

(𝑧) = 𝑃
0

𝑏
𝑧2

(𝑧)−1

𝑏
𝑧2

(𝑧)−𝑏
𝑧1

(𝑧) (𝑧 − 𝑏
𝑧1

(𝑧))

 
Eq. (3) can be used to determine the constant, which is contingent 
upon the ordinate z of the point load location. This equation is 
illustrated graphically in Figure 21  
Assume that the optimal bending moment diagram is obtained 
when the value in the node where the point load is located is

, but the value at the two extremities of this panel is + 0. 5𝑀
𝑚𝑖𝑛

(𝑧)

. The vertical component of cable forces N can be + 0. 5𝑀
𝑚𝑖𝑛

(𝑧)

determined by solving the system of equations:  

  (4) 𝑁(𝑧)𝑀
𝑅
' + 𝑀

𝑃
' =

−𝑀
𝑚𝑖𝑛

(𝑧)

2

𝑀
𝑅

= 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓 𝑐𝑟𝑒𝑒𝑝 𝑖𝑛 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 

 𝑀
𝑝

= 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑟 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑐𝑎𝑏𝑙𝑒

 

  𝑀
𝑅
' =  𝑀

𝑅
(𝑏

1
, 1)  𝑀

𝑅
(𝑏

1
, 2)  ...  𝑀

𝑅
(𝑏

1
, 𝑖)

 𝑀
𝑅

(𝑏
2
, 1)  𝑀

𝑅
(𝑏

2
, 2)  ...  𝑀

𝑅
(𝑏

1
, 𝑖)

 ...  ...  ...  ...

 𝑀
𝑅

(𝑏
𝑖
, 1  𝑀

𝑅
(𝑏

𝑖
, 2)  ...  𝑀

𝑅
(𝑏

𝑖
, 𝑖)

 
 

 (6) 𝑀'
𝑃
(𝑧) =  𝑀

𝑃
(𝑏

1
, 𝑧)

  𝑀
𝑃
(𝑏

2
, 𝑧)

  ...

  𝑀
𝑃
(𝑏

𝑖
, 𝑧)

 
As a result of the fact that  in matrix (5), the 𝑀

𝑅
(𝑏

𝑗
, 𝑛) = 𝑀

𝑅
(𝑏

𝑛
, 𝑗)

inverse matrix  (𝑀
𝑅

)−1

 is created, which only contains members that are not zero around 
the main diagonal. 

 (7) 𝑁(𝑧) = (𝑀
𝑅
' )−1(

−𝑀
𝑚𝑖𝑛

(𝑧)

2 − 𝑀
𝑃
' (𝑧))

 (8) 𝑀(𝑥, 𝑧) =
𝑛=1

𝑖

∑ 𝑁(𝑧)
𝑛
𝑀

𝑅
(𝑥, 𝑛) + 𝑀

𝑃
(𝑥, 𝑧)

 
Figure 22: the point load P0 moving across the bridge is applied to 
nodes z1 = L/2 and z2 = L/4  
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Modelling pylons and girders 

 
Figure 23: Pylon model dimension (Nazmy & Abdel-Ghaffar 1990) 
 

 (1) [𝑘
𝑇
]

𝑏
= [𝑘

𝐸
]

𝑏
+ [𝑘

𝐺
]

𝑏
 [𝑘

𝑇
]

𝑏
= 𝑀𝑎𝑡𝑟𝑖𝑥 𝑏𝑒𝑎𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡,  𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 

 [𝑘
𝐸

]
𝑏

= 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑏𝑒𝑎𝑚
 [𝑘

𝐺
]

𝑏
= 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑟𝑎𝑚𝑒 

 
Cable-stayed bridges, which utilise inclined cable stays to provide 
elastic support for the deck at various points along its length, are 
entering a new phase of development. These structures are now 
being designed for medium to long span lengths, ranging from 
400 m to 1500 m for the central span. In Japan, there are proposals 
to construct even longer cable-stayed bridges, using both 
prestressed concrete and steel materials. The trend towards longer 
spans, coupled with the use of more slender or shallow stiffening 
girders, has raised concerns about the bridges' performance under 
various dynamic loads, including traffic, wind, and seismic 
activity. 
 
Given that these long-span, cable-supported structures are 
complex and exhibit primarily geometric nonlinearity, it is crucial 
to accurately understand and predict their structural response to 
these loads. Consequently, there is a significant need in bridge 
engineering to develop and validate precise methods that can 
provide a comprehensive understanding of the static, dynamic, 
seismic, and wind-related issues associated with cable-stayed 
bridges. This understanding is essential for ensuring the safety 
and reliability of these increasingly ambitious structures. 

Nonlinear analysis three dimensional technique 

Three-dimensional long-span cable-stayed bridges are subjected 
to a set of initial cable tensions and their own dead weight in a 
nonlinear static analysis. The analysis takes into account all causes 
of geometric nonlinearity, including cable sag, the interaction of 
axial force and bending moment in the bridge deck and towers, 

and changes in the bridge geometry brought on by significant 
displacements.  The study of nonlinear structural systems is 
somewhat complicated by the fact that their stiffness varies as the 
structure deforms. In this instance, the stiffness matrix [K] in 
equation (1) depends on the joint displacements {D}, which are not 
yet known. The set of nonlinear stiffness equations requires a 
computational program to solve. Consequently, such nonlinear 
equations for the displacement vector {D} are typically solved 
numerically(Pao & Chen 2009). 
 
The following assumptions and approximations were made to 
facilitate the nonlinear static analysis: 
(1) The elastic limit is maintained for all stresses in the bridge's 
constituent parts.  
(2) At their connection places, all cables are fastened to the bridge 
and the tower.  
(3) The cable stays between the towers and the bridge girder are all 
of the same section and are thought to be straight chord links. 
These links are given an equivalent axial stiffness to offset the sag 
effect.  
(4) It is assumed that cables are completely flexible, meaning that 
their flexural stiffness can be ignored. 
 

 
Figure 24: Mixed procedure used for the nonlinear static Analysis 
(Nazmy & Abdel-Ghaffar 1990). 
 
The joint displacements  are then calculated using equation {𝐷

1
(1)}

(1) with  after the initial load increment is applied {𝑃} = 1
3 {𝑊}

using the tangent stiffness matrix of the undeformed structure 
. The incremental joint displacements brought on by the [𝐾

0
]

second load increment are then calculated using the tangent 
stiffness matrix  that corresponds to the structure's 𝐾

𝑇
(𝐷

1
(1))

displaced shape. To produce , these incremental {𝐷
2
(1)}

displacements are then added to the joint displacements  that were 
previously calculated . This corresponds to point B in the {𝐷

2
(1)}

figure. The process is repeated for the final load increment till 
reaching point C, which marks the end of the first cycle. The 
computed displacements at the conclusion of the cycle   (or {𝐷

1
(1)}

simply  , correspond to loads on the genuine load {𝐷(1)}
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displacement curve, specifically point E. Line CE represents the 
unbalanced loads at the end of the first cycle, . These loads {𝑊(1)}
are then applied as a new set of joint loads during the second cycle 
of iteration, using the tangent stiffness  represented by line 𝐾

𝑇
(𝐷(1))

EF.  

 
Figure 24.1: incremental measurements to be used in calculation 
 
The incremental displacements are calculated from:  

  (1) [𝐾]{𝐷} = {𝑃}

 (2) [𝐾
𝑇
(𝐷(𝑖))]{∆𝐷(𝑖)} = 𝑊(𝑖){ }

 (3) {𝑊(𝑖)} = {𝑊} − [𝐾
𝑠
(𝐷(𝑖))]{𝐷(𝑖)}

 [𝐾] = 𝑔𝑙𝑜𝑏𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒,
 {𝐷} = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡,

 {𝑃} = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑 

 {𝑊(𝑖)} = 𝑜𝑢𝑡 𝑜𝑓 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑓𝑜𝑟𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑓𝑟𝑜𝑚

[𝐾
𝑠
(𝐷(𝑖+1)] = 𝑠𝑒𝑐𝑎𝑛𝑡 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

 𝑤ℎ𝑒𝑛 𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑟𝑒 {𝐷(𝑖)}
 (4){𝐷(𝑖+1)} = {𝐷(𝑖)} + {∆𝐷(𝑖)}

 (5)[𝑘] = [𝑟
𝑚

]𝑇[𝑘
𝑚

][𝑟
𝑚

]

 [𝑘
𝑚

] = 𝑚𝑒𝑚𝑏𝑒𝑟 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 
 [𝑟

𝑚
] = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

 

 [r] 0 0 0 

  (6)[𝑟
𝑚

] =

 
0 [r] 0 0 

 0 0 [r] 0 

 0 0 0 [r] 

 (Ernst 1965) (7) 𝐸
𝑒𝑞

= 𝐸

1+[ (𝑤𝐿)2𝐴𝐸

12𝑇3 ]

𝐸
𝑒𝑞

= 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝐸 = 𝑐𝑎𝑏𝑙𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 
𝐿 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒 ,

 𝑤 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒
 𝐴 = 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒

 𝑇 = 𝑐𝑎𝑏𝑙𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛

 (8) 𝐸
𝑒𝑞

= 𝐸

1+[
(𝑤𝐿)2(𝑇

𝑖
+𝑇

𝑓
)𝐴𝐸

12𝑇
𝑖
2𝑇

𝑓
2 ]

 
Figure 25: Non-linear stress strain curve (Nazmy & Abdel-Ghaffar 
1990).   
 

 (9) 𝑘
𝐸| |

𝑐
=

𝐴𝐸
𝑒𝑞

𝐿
𝑐

1  -1 

 -1  1 

 (10) [𝑘
𝑇
]

𝑐
= [𝑘

𝐸
]

𝑐
+ [𝑘

𝐺
]

𝑐

 [𝑘
𝑇
]

𝑐
= 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 

 [𝑘
𝐸

]
𝑐

= 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 (9)

 

 (11) 𝑘
𝐺| |

𝑐
=

𝐴𝐸
𝑒𝑞

𝐿
𝑐

 [𝐺]
𝑐

  − [𝐺]
𝑐

 

  − [𝐺]
𝑐

  [𝐺]
𝑐

 6 × 6

 

 0 0 0 

  (12) 𝑆𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥 [𝐺]
𝑐

=

 
0 1 0 

 0 0 1 

 

Formulation of nonlinear stiffness for cable components   

As previously mentioned, the tower and girder elements of a 
cable-stayed bridge undergo significant deformations as a result of 
the combined effects of high axial forces and large bending 
moments. This results in a strong coupling between the axial and 
flexural stiffness of the members. This coupling can be accounted 
for in the refined non-linear analysis by incorporating the concept 
of stability function (Nazmy & Abdel-Ghaffar 1990) 
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Figure 26: degree of freedom of a beam element in local 
coordinates  
 

 (13) [𝑘
𝐸

]
𝑏

=  𝑘(1, 1)  𝑘(1, 2)  ....  ....  𝑘(1, 12)

  𝑘(2, 1)  𝑘(2, 2)  ....  ....  𝑘(2, 12)

  ....  ....  ....  ....  ....

  ....  ....  ....  ....  ....

  𝑘(12, 1) 𝑘(12, 2)  ....  ....  𝑘(12, 12)

 
where Z is the cross-section torsional moment of inertia, G is the 
member material shear modulus, S's are the stability functions, 
and E is the member material modulus of elasticity. A, L, and Z are 
the cross-sectional area, lenghth , and cross-sectional moments of 
inertia about the local principal y and z axes, respectively. The 
bending stiffness of the member is modified about the local y axis 
by S1 through S4, while the bending stiffness is modified about the 
local z axis by S1 through S4, and the axial rigidity is modified by 
S5. The value of one is assigned to all of these S's if the axial force 
in the bending member is zero. The axial force P and the member 
end moments Ml and M2 at both ends about the local y and z axes 
of the member can be used to express the stability functions, as 
defined in Fig. 10. 
 

 (14)(𝑎)  𝑘(1, 1) = 𝑘(7, 7) =− 𝑘(1, 7) =− 𝑘(7, 1) = (𝐸𝐴/𝐿)𝑆5

(14)  (𝑏) 𝑘(2, 2) = 𝑘(8, 8) =− 𝑘(2, 8) =− 𝑘(8, 2) = (12𝐸𝐼
𝑧
/𝐿3)𝑆𝐼

𝑧

 (14)(𝑐) 𝑘(3, 3) = 𝑘(9, 9) =− 𝑘(3, 9) =− 𝑘(9, 3) = 12(𝐸𝐼
𝑦
/𝐿3)𝑆𝐼

𝑦

(14)(𝑑) 𝑘(2, 6) = 𝑘(6, 2) = 𝑘(2, 12) = 𝑘(12, 2) =− 𝑘(6, 8)

 =− 𝑘(8, 12) =− 𝑘(12, 8) = (6𝐸𝐼
𝑧
/𝐿2)𝑆2

𝑧

(14)(𝑒) 𝑘(3, 5) = 𝑘(5, 3) = 𝑘(3, 11) = 𝑘(11, 3)

 =− 𝑘(5, 9) =− 𝑘(9, 5) =− 𝑘(9, 11) =− 𝑘(11, 9)= (− 6𝐸𝐼
𝑦
/𝐿2)𝑆2

𝑦

(14)(𝑓) 𝑘(4, 4) = 𝑘(10, 10) =− 𝑘(4, 10) =− 𝑘(10, 4) = 𝐺𝐼
𝑥
/𝐿

      (14)(𝑔) 𝑘(5, 5) = 𝑘(11, 11) = (4𝐸𝐼
𝑦
/𝐿)𝑆3

𝑦

 (14)(ℎ) 𝑘(6, 6) = 𝑘(12, 12) = (4𝐸𝐼
𝑧
/𝐿)𝑆4

𝑦

  (14)(𝑖) 𝑘(5, 11) = 𝑘(11, 5) = (2𝐸𝐼
𝑦
/𝐿)𝑆4

𝑦

 (14)(𝑗) 𝐾(6, 12) = 𝑘(12, 6) = (2𝐸𝐼
𝑧
/𝐿)𝑆4

𝑧

 
For tensioning a member (P is positive), the stability function 𝑆1

𝑧
 

through  are  𝑆4
𝑧

 ,  , (15)(𝑎) 𝑆𝐼
𝑧

= ω3𝑠𝑖𝑛ℎω/12𝑅
𝑙

(15)(𝑏) 𝑆2
𝑧

= ω3𝑐𝑜𝑠ℎω − 1/6𝑅
𝑙

 , (15)(𝑐) 𝑆3
𝑧

= ω(ω𝑐𝑜𝑠ℎω − 𝑠𝑖𝑛ℎω)/4𝑅
𝑙

 , (15)(𝑑) 𝑆4
𝑧

= ω(𝑠𝑖𝑛ℎω − ω)/2𝑅
𝑙

 , (15)(𝑐) 𝑆3
𝑧

= ω(ω𝑐𝑜𝑠ℎω − 𝑠𝑖𝑛ℎω)/4𝑅
𝑡

 ,  (15)(𝑑) 𝑆4
𝑧

= ω(𝑠𝑖𝑛ℎω − ω)/2𝑅
𝑙

 𝑠𝑖𝑛𝑐𝑒 (16) ω = µ𝐿 𝑎𝑛𝑑 µ2 = 𝑃/𝐸𝐼
𝑧

 , when compression member P 𝑎𝑛𝑑 (17) 𝑅
𝑙

= 2 − 2𝑐𝑜𝑠ℎω + ω𝑠𝑖𝑛ℎω

is negative. ,(18)(𝑎) 𝑆𝐼
𝑧

= ω3𝑠𝑖𝑛ℎω/12𝑅
𝑐

 , (18)(𝑏) 𝑆2
𝑧

= ω2(1 − 𝑐𝑜𝑠ℎω)/6𝑅
𝑐

(18)(𝑐) 𝑆3
𝑧

= ω(𝑠𝑖𝑛ω − ω𝑐𝑜𝑠ω)4𝑅
𝑐

, ,  (18)(𝑑)𝑆4
𝑧

= ω(ω − 𝑠𝑖𝑛ω)/2𝑅
𝑐

𝑤𝑖𝑡ℎ (19) 𝑅
𝑐 

= 2 − 2𝑐𝑜𝑠ω − ω𝑠𝑖𝑛ω

In the same manner, by substituting  by for in equations (15) 𝐼
𝑧

𝐼
𝑦

through (20), the stability functions  through  can be found. 𝑆𝐼
𝑦

𝑆4
𝑦

When P is positive for a tension member, The following is how to 
obtain the stability function , (20)ω = µ𝐿 𝑎𝑛𝑑 µ2 = 𝑃/𝐸𝐼

𝑧

,(21) 𝑆5 = 1/[1 − 𝐸𝐴(𝑅
𝑡𝑚𝑦

+ 𝑅
𝑡𝑚𝑧

)/4𝑃3𝐿2]

𝑤ℎ𝑒𝑟𝑒 (22) 𝑅
𝑡𝑚𝑦

= ω
𝑦
(𝑀𝐼

𝑦
2 + 𝑀2

𝑦
2)(𝑐𝑜𝑡ℎω

𝑦
+ ω𝑐𝑜𝑠𝑒𝑐ℎ2ω

𝑦
)

 − 2(𝑚1
𝑌

+ 𝑀2
𝑦
)2 + (𝑀1

𝑦
𝑀2

𝑦
)

, × (1 + ω
𝑦
𝑐𝑜𝑡ℎω

𝑦
)(2ω

𝑦
𝑐𝑜𝑠𝑒𝑐ℎω

𝑦
),  (23) ω

𝑦
= µ

𝑦
𝐿 𝑎𝑛𝑑 µ

𝑦
2 = 𝑃/𝐸𝐼

𝑦
 

𝑎𝑛𝑑(24) 𝑅
𝑡𝑚𝑧

= ω
𝑧
(𝑀1

𝑧
2 + 𝑀2

𝑧
2)(𝑐𝑜𝑡ω

𝑧
+ ω

𝑧
𝑐𝑜𝑠𝑒𝑐2ω

𝑧
)

 − 2(𝑀1
𝑧

+ 𝑀2
𝑧
)2 + (𝑀1

𝑧
𝑀2

𝑧
)× (1 + ω

𝑧
𝑐𝑜𝑡ω

𝑧
𝑐𝑜𝑠𝑒𝑐ω

𝑧
)

  (25) ω
𝑧

= µ
𝑦
𝐿 𝑎𝑛𝑑 µ

𝑦
2 = 𝑃/𝐸𝐼

𝑧

when compression for member P is negative 
,and (26) 𝑆5 = 1/[1 − 𝐸𝐴(𝑅

𝑐𝑚𝑦
+ 𝑅

𝑐𝑚𝑧
)/4𝑃3𝐿2]

 (27) 𝑅
𝑐𝑚𝑦

= ω
𝑦
(𝑀1

𝑦
2 + 𝑀2

𝑦
2)(𝑐𝑜𝑡ω

𝑦
+ ω

𝑦
𝑐𝑜𝑠𝑒𝑐2ω

𝑦
)− 2(𝑀1

𝑦
+ 𝑀2

𝑦
)2

+ (𝑀1
𝑧
𝑀2

𝑧
)× (1 + ω

𝑧
𝑐𝑜𝑡ω

𝑧
𝑐𝑜𝑠𝑒𝑐ω

𝑧
)(2ω

𝑦
𝑐𝑜𝑠𝑒𝑐ω

𝑦
)

 (28) ω
𝑦

= µ
𝑦
𝐿 𝑎𝑛𝑑 µ

𝑦
2 = 𝑃/𝐸𝐼

𝑦

(29) 𝑅
𝑐𝑚𝑧

= ω
𝑦
(𝑀1

𝑧
2 + 𝑀2

𝑧
2)(𝑐𝑜𝑡ω

𝑧
+ ω

𝑧
𝑐𝑜𝑠𝑒𝑐2ω

𝑧
)− 2(𝑀1

𝑦
+ 𝑀2

𝑦
)2

+ (𝑀1
𝑧
𝑀2

𝑧
)× (1 + ω

𝑧
𝑐𝑜𝑡ω

𝑧
𝑐𝑜𝑠𝑒𝑐ω

𝑧
)(2ω

𝑦
𝑐𝑜𝑠𝑒𝑐ω

𝑦
)

  (30) ω
𝑧

= µ
𝑧
𝐿 𝑎𝑛𝑑 µ

𝑧
2 = 𝑃/𝐸𝐼

𝑧
(31)[𝐾

𝑇
]

𝑏
= [𝐾

𝐸
]

𝑏
+ [𝐾

𝐺
]

𝑏

 
 
The secant stiffness matrix is actually the stiffness matrix of a 
beam-column element as provided by equation (13) 
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Nonlinear strain-displacement relationships and the big deflection 
theory can be used to determine the tangent stiffness matrix of 
such an element where P is the axial force and L is the length. 
 
( 32 )  [𝐾

𝐺
]

𝑏
= 𝑃

𝐿
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Figure 27 : non linear analysis technique used in algorithms 
(Nazmy and Abdel-Ghaffar 1990). 

Unit force of linear equation set up 

Following the definition of the "ideal" dead load force diagrams, 
the system of unit forces can be mathematically equivalent to 
these diagrams. 

Then the process of finding out the tensioning order and amount, 
the building order for the deck and pylons, and any needed effects 
for pre-fabricating the deck and pylons starts. 
Principle of Process: 
• To determine appropriate member sizes, the unit loading system 
is first established for the final stage structure. In order to 
demonstrate structural integrity, this procedure typically entails 
redefining some member sizes and running the program again. 
• The "unit force method" can be applied to the study of the 
building stage when suitable values have been obtained. 
• Every stage of construction may be examined and shown to 
comply with the design. 
 
 

 
Figure 28: Bending Moment and stress distribution based on 
applied tension cable reaction load (Bruer et al. 1999).  
 

 (1) 𝑀
𝐴

= 𝑀
𝑃

+ (𝑀
𝑇1=1

. 𝑋
1
) + (𝑀

𝑇2=1
. 𝑋

2
) +.... (𝑀

𝑇8=1
. 𝑋

8
) + (𝑀

𝑇𝐽
 .  𝑋

9
)

 (2) 𝑀
𝐼

= 𝑀
𝑃

+ (𝑀
𝑇1=1

. 𝑋
1
) + (𝑀

𝑇2=1
. 𝑋

2
) +.... (𝑀

𝑇8=1
. 𝑋

8
) + (𝑀

𝑇𝐽
 .  𝑋

9
)

 is the final stage moment at the current position (inc. 𝑀
𝐴

 ...  𝑀
𝐼

tensioning and jacking)  
 Permanent load moment at the current position ( without 𝑀

𝑃

tensioning or jacking)   
 bending moment brought on by the tensioning of 𝑀

𝑇1=1
...  𝑀

𝑇8=1

each unit in its current location.  
 Bending moment brought on by the end support's unit jacking 𝑀

𝐽

in its current location  

Pylon anchorage design  

It is common for stress-disturbed regions (D-regions) to have 
irregular shapes in a cable-stayed bridge. This makes the 
cable-pylon anchorage zone an important part that is hard to 
build. Nevertheless, the pylon anchorage zone lacks specific 
guidelines in the existing standards and codes, necessitating a 
trial-and-error approach to its design. This approach involves 
costly full-scale model experiments and intricate FEM analyses 
(Wu et al. 2017). The current approach is inefficient, uncertain, and 
heavily reliant on the designers' experience. Consequently, it is 
imperative to acknowledge the mechanical behavior of the 
cable-pylon anchorage zone and streamline the design. 
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Configuration of the strut and tie (STM) model  

 
Figure 29: cross section of a pylon wall thickness 

 
Figure 30: Pylon dimensions in anchorage zone  
 
on the basis of specific criteria, introduces finite-element 
modifications into the optimization process. Stiffness, weight, 
frequency, or von Mises stress are some of the other possible 
criteria. The specification for the maximum stiffness topology 
design is typically a uniform strain energy density. This means 
that the optimal structure will be achieved by progressively 
eliminating the elements with lower strain energy densities from 
the initial design domain. (Liang & Steven 2002) proposed the 
performance index (PI) as a metric for evaluating the efficacy of 
the topology. The front-wall is the primary focus of this paper, and 
the ratio between the thickness and width of the front-wall is 
denoted as . λ = 𝑡

𝑞
/𝑏

𝑞

 where , , (1) 𝑃𝐼 =
𝐶

0
𝑉

0

𝐶
𝑖
𝑉

𝑖
𝑃𝐼 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 𝐶

0
=  𝑚𝑒𝑎𝑛 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒

,  𝑉
0

= 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝐶
𝑖
 ,  𝑉

𝑖 
= 𝑖𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

 
Figure 31:  distribution for horizontal plane model cable-pylon λ
 

 
Figure 32: Demonstration of cable pylon anchorage zone topology 
(Cui & Huang 2019). 
 
Two categories are discerned in the initial configuration: When 

, the symmetric line of the front-wall does not produce a λ < 0. 6
vertical bar; when , one vertical bar (or two bars with a λ ≥ 0. 6
small angle between them) is generated. The height of the arch 
formed by the bars in the front-wall will cease to fluctuate once it 
reaches a specific value, and the apex of the arch will separate from 
the outer margin of the front-wall. The arch is unable to 
completely develop when it is small and constrained by the 
thickness of the front wall, and the top of the arch degenerates into 
a horizontal bar. The anchorage zone can be categorized into two 
categories based on the presence of a vertical bar on the 
symmetric line of the front wall: thin anchorage zone  and λ < 0. 6
dense anchorage zone . λ ≥ 0. 6
 
The anchorage zone's initial design domains, which will differ 
depending on the value of  , are illustrated in Figure above. The λ
width is set to 1 and the thickness is set to 0.5, with the side-wall 
dimension being disregarded. The four-node square plane 
element, which has a length of 1/40, is employed. Two parameters 
that are associated with evolutionary structural optimization 
(ESO) are the rejection rate (RR) and the evolution rate (ER), both of 
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which are equal to 0.01. When the maximal PI is achieved, the 
optimal topology is achieved, as illustrated in Figure above. The 
results of the experiment with varied values are presented. 
 
Using a network of "struts" (compressive members) and "ties" 
(tension members) to illustrate the intricate stress distribution 
within the concrete structure, this simplified structural analysis 
model represents the forces acting on the anchorage zone of a 
cable-stayed bridge pylon, where the stay cables connect to the 
concrete tower. In essence, it simplifies the complex geometry by 
dividing it into a network of triangular elements for simpler load 
path and stress calculations.  
 

 
Figure 33: Strut and tie model (STM) in a thin anchorage zone (Cui 
& Huang 2019).  
 

 In the entire STM, the reinforcing steel ties (3) 𝑈 = 1
2 Σ𝐹

𝑖
𝑙

𝑖
ε

𝑖
⇒ 𝑚𝑖𝑛,

are the primary source of strain energy due to the significantly 
higher stiffness of the concrete struts. Eqn (2) can be converted 
into the following when the reinforcement number of ties is 
determined using the yield strength of reinforcement:

 , (4) 𝑈
𝑇

= 1
2 Σ𝐹

𝑖
𝑙

𝑖
ε

𝑦
⇒ 𝑚𝑖𝑛, (5) 𝑙

𝐴𝐶 
= 𝑙

𝐵𝐶
= 1

2 −
𝑙

𝑇1

2 = 1
2 − λ𝑡𝑎𝑛α

2

,(6) 𝑙
𝐴𝐷

= λ − 𝑙
𝐴𝐶

= λ − 1
2 + λ𝑡𝑎𝑛α

2

, (7) 𝑙
𝑇2

= 𝑐𝑠𝑐α
1
. 𝑙

𝐴𝐶
= 2

2 − 2λ𝑡𝑎𝑛α
2

,(8) 𝑙
𝐶

2

= 𝑙
𝐴𝐷

2 + ( 1
2 )2 = λ − 1

2 + λ𝑡𝑎𝑛α
2( )2

+ ( 1
2 )2

, (9) 𝑡𝑎𝑛α
3

= 2𝑙
𝐴𝐷

= 2λ − 1 + 2λ𝑡𝑎𝑛α
2

 equilibrium in y (10) 𝑙
𝑇3

= 𝑏
𝑐

+ 𝑙
𝐴𝐷

=
𝑏

𝑐

2 + λ − 1
2 + λ𝑡𝑎𝑛α

2
,

direction; , , (11) 𝐹
𝑇

3

= 𝑃
2 (12) 𝐹

𝑇1
= 𝑃

4λ (13) 𝐹
𝐶

2

. 𝑐𝑜𝑠α
3

− 𝐹
𝑇2

. 𝑐𝑜𝑠α
1

= 0 

for isolating point A,  ,  Σ𝐹
𝑋

= 0 (13) 𝐹
𝐶2

. 𝑐𝑜𝑠α
3

− 𝐹
𝑇2

. 𝑐𝑜𝑠α
1

= 0

 
Figure 34 : relationship for thin anchorage zones (Cui & λ ,  α

2
  

Huang 2019). 
 

, substituting 𝑠𝑖𝑛𝑐𝑒 Σ𝐹
𝑦

= 0:  (14) 𝐹
𝑇

3

= 𝐹
𝐶2

. 𝑠𝑖𝑛α
3

+ 𝐹
𝑇2

. 𝑠𝑖𝑛α
1

equations (13), (14), (8) and (10) we obtain , (15) 𝐹
𝑇2

= 𝑃
2 2λ(1+𝑡𝑎𝑛α

2
) 

(16) 𝑈
𝑇

= 1
2 ε

𝑦
Σ𝐹

𝑇𝑖
𝑙

𝑡𝑖
= 1

2 ε
𝑦
𝑃

1−2λ𝑡𝑎𝑛α
2

λ(1+𝑡𝑎𝑛α
2
) + 𝑡𝑎𝑛α

2
+ 𝑏

𝑐
+ 2λ − 1 + 2λ𝑡𝑎𝑛α

2
⎡⎢⎣

⎤⎥⎦

, , , (17) 
∂𝑈

𝑇

∂α
2

= 0 (18) 
−𝑠𝑒𝑐2 α

2
(2λ+1)

λ(1+𝑡𝑎𝑛α
2
)2 + 𝑠𝑒𝑐2α

2
+ 2λ𝑠𝑒𝑐2α

2
= 0

 (19) α
2

= 1. 36λ2 − 2. 58λ + 1. 34

 
Table 2: bar forces in a thin anchorage zone  
 

 λ  𝑃  𝐹
𝑇1

 𝐹
𝑇2

 𝐹
𝑇3

0.3 1 0.83 0.65 0.5 

0.35 1 0.71 0.6 0.5 

0.4 1 0.63 0.56 0.5 

0.45 1 0.56 0.53 0.5 

0.5 1 0.5 0.5 0.5 

0.55 1 0.45 0.48 0.5 

 
 

17 

https://paperpile.com/c/pPMRnK/ufbP
https://paperpile.com/c/pPMRnK/ufbP
https://paperpile.com/c/pPMRnK/ufbP
https://paperpile.com/c/pPMRnK/ufbP


 

Thick anchorage zone for  λ ≥ 0. 6

 
Figure 35: Strut and tie model (STM) in a thick anchorage zone.  
 
Vectorizing the thick anchorage zone's ideal topology in the 
previous figure yields the model of definitely, indicating that the 
primary geometric parameters won't alter with , only if λ

, the model is uniformly scaled then ,  0. 6 ≤ λ < 0. 65 𝑙
𝑐1 

= 𝑙
𝑐2

, and , when , , when ,α
1

= 41◦ α
2

= 26◦ 0. 6 ≤ λ < 0. 65 ℎ = λ λ ≥ 0. 65

.  ℎ = 0. 65
 

 
Figure 36: Normalised force distribution with respect to anchorage 
zone depth(Cui & Huang 2019).  

, ,(20) 𝐴
𝑝

≥
𝑇

𝑠

ϕσ
𝑝𝑒

𝑤ℎ𝑒𝑟𝑒 𝐴
𝑝

= 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑑𝑜𝑛𝑠 

, ,𝑇
𝑆

=  𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑠𝑡𝑟𝑢𝑡 ϕ = 0. 75 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

 𝑤ℎ𝑒𝑟𝑒 σ
𝑝𝑒

= 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 

,σ
𝑝𝑒

= 0. 6σ
𝑐𝑜𝑛

 𝑓𝑜𝑟 𝑐𝑢𝑟𝑣𝑒𝑑 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠

  σ
𝑝𝑒

= 0. 74σ
𝑐𝑜𝑛

 𝑤ℎ𝑒𝑛 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑑𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡

 

 
Figure 37: prestressed concrete tendons for pylon design for thin 
anchorage zone.  
 
 

 
Figure 38: Stress design distribution of cable pylon with one way 
tendons (Cui & Huang 2019). 

Mechanism of shear failure in deep columns of reinforced 
concrete 
This study created a cracking strut-and-tie model (CSTM) to 
analyze the shear failure of RC deep beams, with a focus on the 
impact of diagonal cracks on the strut (refer to Figure). These 
assumptions are made for simplicity in the proposed CSTM: 
(1) The interface BC between the diagonal strut and the CCC node 
is reached by all flexural and flexural-shear fractures. 
Consequently, the flexural-shear fractures diagonally traverse a 
portion of the strut. The critical shear of the fractures is the 
diagonal crack that is closest to the support plate. Consequently, 
the maximal crack width and tensile strain of the reinforcing bars 
are observed at the beam bottom, and they decrease linearly to 
zero at the BC interface. 
(3) The compressive failure of the strut at the interface BC governs 
the shear failure of deep beams. The interface BC is divided into 
interfaces BM and MC by the CSC. Shear tests reveal two frequent 
failure types for deep beams: (1) shear-compression failure 
(discussed in Section 2) and (2) pure compression failure of the 
entire strut. A shear-compression failure occurs in the CSTM when 
the effective compressive strength of the interface MC below the 
CSC is less than that of the interface BM above the CSC. 
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Conversely, the pure compression failure occurs when the effective 
strength of the interface BM is equivalent to that of the interface 
MC. 
The strut is divided into two sections by a crack (CSC). 
(2) The crack width and reinforcement strain are distributed 
linearly along 
 

Figure 39: strut and tie crack model of a thick anchorage 
zone(Chen et al. 2018).  
 
The line MN shown in figure 40 is parallel to the axis of the strut, 
and point M is defined as the intersection of the CSC and interface 
BC. The effective compressive strength of the strut in relation to 
the interface BM is equivalent to the ultimate compressive 
strength of a standard concrete strut, as the resultant force Fsi on 
the interface BM is transferred to the region of the strut that is not 
affected by the diagonal cracks. It is important to acknowledge 
that splitting fractures parallel to the strut axis may develop in the 
region above the critical shear strength (CSC)  (Birrcher et al. 
2009). However, the ultimate strength of the strut is not 
significantly impacted by the splitting cracks (Laughery & Pujol 
2015). This analysis therefore disregards the splitting cracks. On 
the other hand, the effective compressive strength degradation 
brought on by the diagonal cracks should be considered since the 
force Fsc that results on the interface MC is transferred to the 
cracked area of the strut. Consequently, the strut efficiency 
coefficients should be applied to the two strut interfaces 
independently. The aggregate interlock action is activated by the 
slip between the CSC surfaces, which is a result of the varying 
stress states of the two portions of the strut. 

 (1) 𝐹
𝑠𝑖

= σ
𝑐𝑖

𝑤
𝑠𝑖

𝑏 = 𝑘
𝑐
β

𝑠𝑖
𝑓

𝑐
' 𝑤

𝑠𝑖
𝑏

 (2) 𝐹
𝑠𝑐

= σ
𝑐𝑐

𝑤
𝑠𝑐

𝑏 = β
𝑠𝑐

𝑓
𝑐
' 𝑤

𝑠𝑐
𝑏

and ultimate resultant forces on the BM and MC interfaces 𝐹
𝑠𝑖 

𝐹
𝑠𝑐

 

and , σ
𝑐𝑖

= 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑝𝑎𝑟𝑡 

where  (Almelda 2000) since 𝑘
𝑐

= (1 − 𝑓
𝑐
' /250)

 𝑓
𝑐
' 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 

β
𝑠𝑖 

𝑎𝑛𝑑 β
𝑠𝑐 

𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎

,  (3) 𝑉
𝑛

= (𝐹
𝑠𝑖

+ 𝐹
𝑠𝑐

). 𝑠𝑖𝑛θ 𝑉
𝑛

= 𝑡𝑜𝑡𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

 

 
Figure 40: strut with diagonal cracks near CCC nodes (Chen et al. 
2018).  
 
Assuming that the point A is the origin of the coordinate, the 
critical shear crack form and incline stress with the interface BC 
with an angle  parallel with the longitudinal bar.  α

 (4) 𝑤
𝑠𝑖

= 𝑡𝑎𝑛θ. 𝑙
𝑏𝑡

+ 𝑐.(𝑡𝑎𝑛α−𝑡𝑎𝑛θ)
𝑡𝑎𝑛α+𝑐/𝑙

𝑏𝑡

⎡⎢⎣
⎤⎥⎦
𝑐𝑜𝑠θ

 𝑤
𝑠𝑖 

𝑎𝑛𝑑 𝑤
𝑠𝑐

 = 𝑠𝑡𝑟𝑢𝑡 𝑤𝑖𝑑𝑡ℎ𝑠,  𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑀𝑁  

 𝑓𝑜𝑟 𝐵𝑀 𝑎𝑛𝑑 𝑀𝐶 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

,  (5) 𝑤
𝑠𝑐

= 𝑐 − 𝑐.(𝑡𝑎𝑛α−𝑡𝑎𝑛θ)
𝑡𝑎𝑛α + 𝑐/𝑙

𝑏𝑡

⎡⎢⎣
⎤⎥⎦
𝑐𝑜𝑠θ

   (6) 𝑡𝑎𝑛θ = 𝑑−𝑐/2
𝑎 (7) 𝑡𝑎𝑛α = ℎ

α+𝑙
𝑏𝑡

/2−𝑙
𝑏𝑠

/2−𝑠
𝑐𝑠𝑐

 
Figure 41 : Variance of CSC angle  and strut angle  according to α θ
the shear span depth ratio (Jin-Keun & Yon-Dong 1994). 
 

(8)  α = 8. 53(𝑎/𝑑 − 2. 5)2 + 30. 55 ≥ 𝑎𝑟𝑐𝑡𝑎𝑛 ℎ
𝑎+(𝑙

𝑏𝑡
/2)−(𝑙

𝑏𝑠
/2)( )

Solving the following equation (9) the compression zone depth c 
can be obtained.  
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 (9) 𝑐2 + 2𝑛 ρ𝑑 + ρ'(ℎ = 𝑑') + 4
3 ρ'𝑑'(ℎ − 𝑑') + ρ𝑑2 + 2

3 ρ
ℎ
𝑑2⎡⎢⎣

⎤⎥⎦ = 0

where, ,𝑛 =
𝐸

𝑆

𝐸
𝑐

 ρ 𝑎𝑛𝑑 ρ' 𝑟𝑎𝑡𝑖𝑜𝑠 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑏𝑎𝑟𝑠

𝑑' = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑖𝑏𝑒𝑟
,  ρ

ℎ
= 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑤𝑒𝑏 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 

 according to (Laughery & Pujol (10) β
𝑠𝑐

=
σ

𝑐𝑐

𝑓
𝑐
' =

σ
𝑐𝑐,𝑎𝑔

+σ
𝑐𝑐,𝑠

𝑓
𝑐
' ≤ 𝑘

𝑐
β

𝑠𝑖

2015) known as strut efficiency coefficients of the β
𝑠𝑖

= 0. 85 

interface BM shown in figure  effective compressive σ
𝑐𝑐

= 𝑀𝑃𝑎

strength. Diagonal cracks should be included when calculating 
effective compressive strength . Shear transfer. The tensile σ

𝑐𝑐

strength of web reinforcement, doweling of longitudinal bars, and 
the interaction of aggregates are all components of a fractured 
surface. And 

,σ
𝑐𝑐,𝑎𝑔

= 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑙𝑜𝑐𝑘,  𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

σ
𝑐𝑐,𝑠

= 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑜𝑤𝑒𝑙 𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑎𝑟𝑠 𝑎𝑛𝑑 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑤𝑒𝑏 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛

,  since  (11) σ
φ

= σ
𝑐𝑐,𝑎𝑔

𝑠𝑖𝑛2φ (12) τ
φ

= σ
𝑐𝑐,𝑎𝑔

𝑠𝑖𝑛φ𝑐𝑜𝑠φ φ = (α − θ)

(Vecchio & Collins 1986).  

 where  is the ultimate (13) τ
φ

= 0. 18τ
𝑚𝑎𝑥

+ 1. 64σ
φ

− 0. 82
σ

φ
2

τ
𝑚𝑎𝑥

τ
φ

shear stress while  is the normal stress. And σ
φ

 since is the aggregate size (14) τ
𝑚𝑎𝑥 

=
𝑓

𝑐
'

0.31+24𝑤/(𝑎
𝑔
+16 ) 𝑎

𝑔
= 19 𝑚𝑚 

(Bentz 2000) and  is the crack width  𝑤

 
Figure 42 : Interlocking mechanism of aggregates in fine model 
analysis at CSC  

, , (15) 𝑤 =
𝑤

𝑏𝑜𝑛𝑑
+𝑤

𝑑𝑒

2𝑠𝑖𝑛α =
1.7𝑠

𝑟
ε

𝑠𝑐,𝑚
+𝑙

𝑑𝑒
ε

𝑠𝑐

2𝑠𝑖𝑛α (16) 𝑠
𝑟

= 2(ℎ − 𝑑) + 0. 125
ϕ

𝑠

ρ
𝑒

  (17) ε
𝑠𝑐,𝑚

= ε
𝑠𝑐

− 0. 4
𝑓

𝑐𝑡

ρ
𝑒
𝐸

𝑠

sliding between longitudinal bars and concrete in a strong 𝑤
𝑏𝑜𝑛𝑑

=

bonding location causes crack beneath (Laughery & Pujol 2015) 
The crack width is created by the slip between longitudinal 𝑤

𝑑𝑒
=

bars and concrete along the delamination (dowel) fracture 
(Cavagnis et al. 2015) .  (Laughery & Pujol 𝑠

𝑟
= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑎𝑐𝑘 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 

2015). strain of longitudinal bars at CSC  The mean ε
𝑠𝑐

=  ε
𝑠𝑐,𝑚

=

strain of longitudinal bars across the length of , delamination 𝑠
𝑟

𝑙
𝑑𝑒

=

crack length in CSCto the inner edge support plate along the 

longitudinal bars    where   bar numbers  (18) ϕ
𝑒𝑞

=
Σ𝑛

𝑠,𝑖
ϕ

𝑠,𝑖
2

Σ𝑛
𝑠,𝑖

ϕ
𝑠,𝑖

𝑛
𝑠,𝑖 

= ϕ
𝑠,𝑖

=

diameter of reinforcement  reinforcement (19) ρ
𝑒

= ρ 𝑑
2.5(ℎ−𝑑) ρ

𝑒 
=

bar ratio (Taerwe & Matthys 2013). Following the equation (17) the 
 uniaxial tension strength of concrete:  𝑓

𝑐𝑡
=

 

 (20)𝑓
𝑐𝑡

=  0. 3(𝑓
𝑐
' )2/3  𝑓𝑜𝑟 𝑓

𝑐
' ≤ 50 𝑀𝑃𝑎

  1. 12(𝑓
𝑐
' )1/3  𝑓𝑜𝑟 𝑓

𝑐
' > 50 𝑀𝑃𝑎

 
Solving equation (11) and (12) into (13) obtain the following:  

 where (21) σ
𝑐𝑐,𝑎𝑔

= ζτ
𝑚𝑎𝑥

 (22)ζ = −𝑠𝑖𝑛φ𝑐𝑜𝑠φ + 1.64𝑠𝑖𝑛2φ+ (𝑠𝑖𝑛φ𝑐𝑜𝑠φ−1.64𝑠𝑖𝑛2φ)2+0.59𝑠𝑖𝑛4φ

1.64𝑠𝑖𝑛4φ

when , , , φ, 20◦ φ = 1◦ − 20◦(23)ζ = 8.45
φ−0.15 + 0. 67 (24) ε

𝑠𝑐
= ηε

𝑠𝑚

where  is the reduction factor the longitudinal bars at the mid η
span known as the weakest point 

 (25) ε
𝑠𝑚

=
𝑉

𝑛
𝑎(𝑑−𝑐) 

(𝑑−𝑐)2𝐸
𝑆
ρ𝑏𝑑+[𝑐−(ℎ−𝑑')]2𝐸

𝑆
ρ'𝑏𝑑'+(𝑑−𝑐)3𝐸

𝑆
ρ

ℎ
𝑏+𝐸

𝐶
𝑏𝑐3/3

Where , shear span of the beam width of 𝑉
𝑛

= 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑜𝑟𝑐𝑒 𝑎 = 𝑏 =  

the beam  effective depth of the beam 𝑑 =
 elastic modulus of steel, 𝑐 = 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑧𝑜𝑛𝑒 𝐸

𝑠
=

Elastic modulus of concrete  𝐸
𝑐 

= (26) (1 − η)(𝑇 + 𝑇
ℎ
) = 𝐹

𝑠𝑐,𝑠
𝑐𝑜𝑠θ

and  is the ratio of  ρ , ρ'

longitudinal tension and compression bars respectively.  are ρ
𝑣
, ρ

ℎ

the ratio of vertical and horizontal web reinforcement respectively 
since distance the centroid of the compression bars to the 𝑑' =  
extreme compression fiber. , (27) 𝑉

𝑠𝑐,𝑣
+ 𝑉

𝑠𝑐,𝑑
= 𝐹

𝑠𝑐,𝑠
𝑠𝑖𝑛θ

 when shear force carried by vertical (28) η = 1 −
𝑉

𝑠𝑐,𝑣
+𝑉

𝑠𝑐,𝑑

𝑇+𝑇
ℎ

𝑐𝑜𝑡θ 𝑉
𝑠𝑐,𝑣

=

crack. shear force of dowel acting on critical shear since 𝑉
𝑠𝑐,𝑑

=

forces  (29) 𝑇 = ε
𝑠𝑚

𝐸
𝑆
ρ

ℎ
(𝑑 − 𝑐)𝑏 ≤ 𝑓

𝑦
ρ

ℎ
𝑑𝑏

  (30) 𝑇
ℎ

=
ε

𝑠𝑚
𝐸

𝑆
ρ

ℎ
(𝑑−𝑐)𝑏

2 ≤ 𝑓
ℎ𝑦

ρ
ℎ
(𝑑 − 𝑐)𝑏

 
Figure 44: free body diagram of the reinforcement (Chen et al. 
2018). 
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 where ratio of (31) 𝑉
𝑠𝑐,𝑣

=
ε

𝑣
𝐸

𝑆
ρ

ℎ
𝑑

𝑀
𝑏𝑐𝑜𝑡α

2 ≤ 𝑓
𝑣𝑦

ρ
𝑣
𝑑

𝑀
𝑏𝑐𝑜𝑡α ρ

𝑣
=  

the transverse reinforcement, strain of transverse ε
𝑣

=  

reinforcement at the bottom of CSC yield stress of horizontal 𝑓
ℎ𝑦

=

bars, yield stress of the vertical reinforcement. 𝑓
𝑣𝑦

=

Based on transverse reinforcement (Zararis 2003). ε
𝑠𝑐

𝑐𝑜𝑡2α = ε
𝑣

=

, ,ε
𝑠𝑐

= ηε
𝑠𝑚

(32) 𝑉
𝑠𝑐,𝑣

=
ηε

𝑠𝑚
𝐸

𝑠
ρ

𝑣
𝑑

𝑀
𝑏𝑐𝑜𝑡3α

2 ≤ 𝑓
𝑣𝑦

ρ
𝑣
𝑑

𝑀
𝑐𝑜𝑡α

 ,  ,  (33) 𝑉
𝑠𝑐,𝑑

= (1 −
σ

𝑠𝑐

𝑓
𝑦

)
𝑛

𝑠
ϕ

𝑠
3𝑓

𝑦

3𝑙
𝑑𝑒

(σ
𝑠𝑐

= ε
𝑠𝑐

𝐸
𝑆

= ηε
𝑠𝑚

𝐸
𝑠

≤ 𝑓
𝑦
) σ

𝑠𝑐

known for the tensile stress of the longitudinal bars at the cross 
section area. The maximum allowable downward force is caused 
by the interaction of tension force and bending, and the reduction 

coefficient allows this. This shows a linear approximation 1 −
σ

𝑠𝑐

𝑓
𝑦

of the reduction coefficient  (Taerwe & Matthys 2013). (1 −
σ

𝑠𝑐
2

𝑓
𝑦
2 )

By substituting the equations above 19, 30 , 32, 33 into 28, 

assuming ,  . Since , ε
𝑠𝑚

𝐸
𝑠

= 𝑓
𝑦

(34) η =
−𝐾

1
+𝐾

2
𝑡𝑎𝑛θ

𝐾
3
−𝐾

1
+𝐾

2
𝑡𝑎𝑛θ 𝐾

1
= 𝑛

𝑠
ϕ

𝑠
3/(3𝑙

𝑑𝑒
)

+  and ,  only if the 𝐾
2

= ρ𝑏𝑑
ρ

ℎ
𝑏(𝑑−𝑐)

2 𝐾
3

=
ρ

𝑣
𝑑

𝑀
𝑏𝑐𝑜𝑡3α

2 𝐾
3

= 0

transverse beam is without transverse reinforcement.  when η = 1
the strain of the longitudinal bars at the critical shear crack is the 
same at the mid span.  when working with a deep beam case η < 1
verified by (Rogowsky & Macgregor 1983) and (Li et al. 2023). He 
effective compressive strength can be calculated as 

. In terms of real-world use, the suggested (35) σ
𝑐𝑐,𝑠

=
𝑉

𝑠𝑐,𝑣
+𝑣

𝑠𝑐,𝑑

𝑏𝑤
𝑠𝑐

𝑠𝑖𝑛θ

CSTM can be further simplified without resorting to an iterative 
procedure. It is well established that the shear strength of 
reinforced concrete beams diminishes as the tensile strain of the 
longitudinal bars increases, and the longitudinal bars typically 
remain in the inelastic stage at the point of shear failure.the 
proposed procedure can take the value of , Therefore, the β

𝑠𝑐
= 0. 85

shear resistance of the RC beams can be conservatively estimated 
without the need for complex calculations, provided that the 
longitudinal bars yield. Furthermore, because the shear resistance 
is not greatly impacted by the effects, the effects of longitudinal 
bars and transverse reinforcement in compression, as well as the 
interaction between these two elements in tension, are overlooked 

 as yield strain of the longitudinal bar. ε
𝑠𝑚

= ε
𝑦

ε
𝑦

=  

 (36) 𝑐 = ( (𝑛ρ)2 + 2𝑛ρ − 𝑛ρ)𝑑

 
Figure 45: two equations comparison between (Chen et al. φ 𝑎𝑛𝑑 ζ
2018).  

 . The equation (33) states that the (38) σ
𝑐𝑐,𝑎𝑔

= ζτ
𝑚𝑎𝑥

=
1.33 𝑓

𝑐
'

0.31+0.34αε
𝑦
/𝑠𝑖𝑛α

shear force caused by the dowel action decreases to zero as the 
longitudinal bars at CSC reach the yield stage,  the 𝑑

𝑀
= 0. 9𝑑

effective compressive strength can written as: 

, (39)σ
𝑐𝑐,𝑠

=
𝑉

𝑠𝑐,𝑣

𝑏𝑤
𝑠𝑐

𝑠𝑖𝑛θ ≤
0.45𝑓

𝑦
ρ

𝑣
𝑑𝑐𝑜𝑡3α

𝑤
𝑠𝑐

𝑠𝑖𝑛θ ≤
0.9𝑑

𝑣𝑦
ρ

𝑣
𝑑𝑐𝑜𝑡α

𝑤
𝑠𝑐

𝑠𝑖𝑛θ

 (40)𝑉
𝑛

= 0. 8(𝐹
𝑠𝑖

+ 𝐹
𝑠𝑐

)𝑠𝑖𝑛θ

Failure mechanism of trusses - Non linear analysis 

Case of bridge collapse also occurred in the US. On August 1, 2007, 
the I-35W bridge in Minneapolis, United States, collapsed over the 
Mississippi River. The failure of a connection at one of the gusset 
plates is what caused that sudden collapse. The corrosion of the 
gusset plate and the increased weight on the bridge were potential 
causes of the collapse of the structure. The failure of steel truss 
bridge components may result in additional damage or perhaps 
cause the bridge to collapse. This work presents a non-linear 
analysis of the failure mechanism of single span and continuous 
span steel truss bridges utilizing pushover analysis (Astaneh-Asl 
2008). 
 
 

 
Figure 46: Bridge A1 

 
Figure 47: Truss bridge frame side view A2 and A3.  
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Figure 48: Cross section of bridge dimensions used for structural 
analysis  
 
The bridge deck is assumed to consist of a reinforced concrete slab 
with a thickness of 200 mm. The Indonesian industrial standard 
for steel grades specifies a Young's modulus of   MPa, a 2. 1 × 105

yield stress of 290 MPa, and an ultimate tensile strength of 500 
MPa (Pramana & Darma 2024).  
 

 
Figure 49: Structural analysis of trusses though pressure 
distribution (Wahyuni et al. 2016). 

Target of displacement of a truss frame  

 (Prestandard 2000) (1) δ
𝑇

= 𝐶
0
𝐶

1
𝐶

2
𝐶

3
𝑆

𝑎
(

𝑇
𝑒

4π )2𝑔

 (2) 𝑆
𝑎

= 𝐶
𝐷

 × 𝑆
0

= 0. 92 × 1. 2 = 1. 104

As  𝐶
0

=  𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑎𝑛𝑑 𝑟𝑜𝑜𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 1 

, 𝐶
1

= 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 = 1 𝑖𝑓 𝑇
𝑒

≥ 𝑇
𝑠

, 𝐶
2

= 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =  1 

𝐶
3

= 1 𝑓𝑜𝑟 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑦𝑖𝑒𝑙𝑑 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑢𝑒 𝑡𝑜 

, 𝑆
𝑎

=  𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑇
𝑒

=  𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 

(Nugraha et al. 2023). 
 

Model   𝐶
0

 𝐶
1

 𝐶
2

 𝐶
3

 𝑆
𝑎

 𝑇
𝑒
 (𝑠)  𝑑

𝑇
(𝑐𝑚)

A1 1 1 1 1 1.104 0.2527 20.19 

A2 1 1 1 1 1.104 0.1828 11.03 

A3 1 1 1 1 1.104 0.1258 6.96 

Table3 : Target of displacement of truss frame results at different 
models through  nonlinear analysis (Wahyuni et al. 2016).  
 
 

 Base 
force  

(T) First 
yield  

Ultimat
e Point  

Ductili
ty  

Model First 
Yield  

Ultimat
e point  

 δ
𝑦
(𝑚𝑚)  δ

𝑢
(𝑚𝑚)  µ =

δ
𝑢

δ
𝑦

A1 133.11 144.07 23.91 25.25 1.06 

A2 374.7 387.71 18.06 19.15 1.07 

A3 315.22 325.75 12.39 13.23 1.09 

Table4 : Comparison of different models results (Wahyuni et al. 
2016) 

Connections for Sliding Corner Gussets 

The beam-column junction opening and closing in braced frames 
might induce premature rupture of the welded corner gusset 
connection and/or neighboring framing members. 
Previous research has proposed and experimentally studied a 
sliding gusset connection for buckling-restrained braced frames 
(BRBFs) to reduce frame action effect. The gusset plate is bolted to 
beam and column flanges through slotted end plates, allowing 
sliding at the gusset-to-frame interfaces. To enhance experimental 
results and create a feasible design approach, high-fidelity finite 
element models were created and validated against experimental 
results for sliding gusset connections. A series of numerical 
parametric studies followed. 
Different beam-to-column connection arrangements were 
examined first. The strengthened beam end created a plastic hinge 
independent of the gusset connection region, reducing plasticity 
and strain demands on bolts at the gusset-to-frame interfaces. 
Second, the comparable tensile force approach was suggested for 
designing bolts in sliding gusset connections. Different bracing 
angles and frame member sections were used to quantify the 
equivalent forces under brace tension action. Thirdly, the sliding 
gusset connection's behavior was investigated in the context of the 
combined brace-frame action. The results verified the gusset plate 
design method and suggested bolt design criteria. Finally, a 
realistic design approach for the sliding gusset connection in 
BRBFs was developed based on the results and discussion, making 
it readily applicable to engineers. 

 
Figure 50: Sliding Gusset Connection (a) assembly of components; 
(b) relative displacement at the gusset-to-frame interfaces(Zhao et 
al. 2018). 
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In their prior study (Zhao et al. 2018), the authors documented 
full-scale tests of brace-beam-column subassemblies with either a 
sliding gusset76 connection or a welded connection. This section 
details the construction of finite element models for the test 
specimens SC-2 and WC, which represent the sliding gusset 
connection and the welded gusset connection, respectively. Figure  
illustrates the test configuration and the finite element model of 
specimen SC-2. 

 
Figure 51 : test set up for structural steel gusset connection set up 
and FE model (Zhao et al. 2018).  
 
the connections between the gussets. The sensitivity analysis was 
used to determine the mesh diameters, as depicted in Figure 51. In 
order to accurately represent the potential deformation behavior, a 
minimum of three layers of elements were implemented 
throughout the thickness of each plate. The refined mesh size of 3 
mm was employed for the high-strength fasteners in the sliding 
gusset connection. The 'bolt load' tool in ABAQUS was utilized in 
order to model the bolt pretension load. The loads that were 
applied to the bolts at the gusset-to-beam and gusset-to-column 
interfaces were 140 kN and 257 kN, respectively. The BRB was 
modeled using a T3D2 truss element, with one end pinned (Point 
A) and the other kinematically connected to the gusset plate's 
cruciform cross-section (Point E). 
 
The 'Hard Contact' property was implemented to denote the 
behavior that is characteristic of all contact surfaces. 
To characterize the frictional tangential behavior, the "Coulomb 
Friction" with "penalty" option was established. The low-frictional 
butyl rubber layer interface was given a friction coefficient of 0.075 
(Chen et al. 2016), while the standard steel-to-steel interface was 
given a friction coefficient of 0.3. To "tie" together, welded surfaces 
were modeled. The roller support and the anchored support were 
implemented at Point B and C in the FE models, respectively, in 
accordance with the boundary conditions of the test. 
 

 ,  (1) 𝐺 = 𝐸/2(1 + ν) 𝐸 =  𝑌𝑜𝑢𝑛𝑔'𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑣 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛'𝑠 𝑟𝑎𝑡𝑖𝑜 
 

Category Materia
l Grade  

Young’s 
modulu
s (GPa) 

Yield 
strengt
h (MPa)  

Tensile 
strengt
h (MPa)  

Shear 
modulu
s (GPa) 

Poisson 
ratio 

Beam 
Flange  

Q235-B 204 237 413 4.08 0.3 

Beam 
Web  

Q235-B 204 271 429 4.08 0.3 

Column 
Flange  

Q345-B 208 339 507 4.16 0.3 

Column Q345-B 208 360 514 4.16 0.3 

web  
Gusset 
Plate 

Q235-B 205 280 429 4.1 0.28 

Flange 
plate  

Q235-B 206 294 426 4.12 0.3 

Panel 
zone 
plate 

Q345-B 206 380 517 4.12 0.3 

Stiffener  Q235-B 206 294 426 4.12 0.3 
End plate  Q345-B 206 369 517 4.12 0.3 
Shim 
plate  

Q235-B 206 294 426 4.12 0.3 

Bolt  10.9 206 940 1040 4.12 0.3 
Bolt  8.8 206 664 830 4.12 0.3 
Sher Stud  N/A 206 294 426 4.12 0.3 
Rebar  HRB40

0 
206 400 -​  -​  0.3 

Table 5: Material properties in FE models  
 

 𝐸
 (𝐺𝑃𝑎)

 𝐴
𝑒𝑞

 (𝑚𝑚2)

𝑓
𝑦,𝑒𝑞

 (𝑀𝑃𝑎)
 

 𝐸
𝑡
/𝐸  𝑅

0
 𝑐𝑅

1
 𝑐𝑅

2
 𝑎

1
 𝑎

2
 𝑎

3
 𝑎

4

205 232
0 

262 0.0
1 

20 0.9
25 

0.15 0.0
52 

1.0 0.0
5 

1.0 

Table 6: Guiffre-Menegotto-Pinto model parameters of truss 
element  
 
𝐸 =  𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠;𝐴

𝑒𝑞
= 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑢𝑠𝑠  

𝐸
𝑡

=  𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑓
𝑦,𝑒𝑞

= 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑟𝑢𝑠𝑠 

, 𝑅
0
, 𝑐𝑅

1
 𝑎𝑛𝑑 𝑐𝑅

2
= 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑡𝑜 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠,  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

,  𝑎
1
, 𝑎

2
, 𝑎

3
𝑎𝑛𝑑 𝑎

4
= 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑡𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔

Concrete slab subassembly with beams and columns 

 
This part modeled and validated the composite beam effect and 
concrete floor slab. (Lee et al. 2016) created a FE model for the 
tested beam-to-column assembly with concrete slab, specifically 
the specimen PN700-C. The beam-to-column connection used 
welded flange-bolted web arrangement. On the beams, profiled 
steel decking supported the concrete slab. 
The beam has shear studs welded on top. Bi-directional rebars 
were 50 mm for reinforcement. 
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Figure 52 : (Lee et al. 2016) A beam-to-column concrete floor slab 
connection 
 
(a) Test setup; (b) Floor slab details; (c) FE model; (d) Concrete 
stress-crack strain relationships; (e) Compressive stress-inelastic 
strain relationships; (f) Tensile damage-crack strain relationships; 
(g) Compressive damage-inelastic strain relationships.  
 
‘Hard Contact’ was delineated to characterize the typical behavior 
at the contact interfaces. The friction coefficients of 0.4 and 0.3 
were established for the tangential frictional behavior at the 
concrete-to-steel and steel-to-steel contact surfaces, respectively. 
In order to simplify the process, all of the welded connections were 
"tied" to each other. It was modeled that the rebars and shear studs 
would be set into the floor slab. Each bolt was subjected to a 
pretension force of 220 kN. A pin support was established at the 
inflection points A and B for the boundary condition. Vertical 
cyclic loading was applied at point C. 

 
Figure 53: Plastic strain concentration at the boom flange of the 
beam (Zhao et al. 2018). 
 
The panel zones created according to the P1 criterion exhibited 
some degree of plasticity, whereas those designed per the P2 
criterion remained elastic, demonstrating the efficacy of the P2 

criterion in maintaining the elasticity of the panel zone (Liu et al. 
2022). 
 

 (2) 𝑃1:  ϕ(𝑀
𝑝𝑏1

+ 𝑀
𝑝𝑏2

)/𝑉
𝑝

≤ 4
3 𝑓

𝑣𝑦
(3) 𝑉

𝑝
=  ℎ

𝑏1
ℎ

𝑐1
𝑡

𝑝
 

 ​ where  (4) 𝑃2: (𝑀
𝑝𝑏1

+ 𝑀
𝑝𝑏2

)/𝑉
𝑝

≤ 4
3 𝑓

𝑣𝑦

 
; 0. 75 ≤ ϕ = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ≤ 0. 85

𝑀
𝑝𝑏1

𝑎𝑛𝑑 𝑀
𝑏𝑝2

= 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑝𝑎𝑛𝑒𝑙 𝑧𝑜𝑛𝑒 

; ;𝑓
𝑣𝑦

= 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑎𝑛𝑒𝑙 𝑧𝑜𝑛𝑒 

𝑉
𝑝

= 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑛𝑒𝑙 𝑧𝑜𝑛𝑒 

; ℎ
𝑏1

= 𝑏𝑒𝑎𝑚 𝑑𝑒𝑝𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑓𝑙𝑎𝑛𝑔𝑒𝑠

;  ℎ
𝑐1

= 𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑒𝑝𝑡ℎ 𝑡
𝑝

= 𝑝𝑎𝑛𝑒𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

 
The existence of a concrete floor slab was an additional element 
evaluated in the parametric analysis. In certain variants, a concrete 
slab measuring 1400 mm in width and 100 mm in thickness was 
utilized. Bi-directional rebars with a diameter of 8 mm and a 
spacing of 150 mm were incorporated in the upper layer. 
Horizontal displacement at point C and B can be followed by the 

ratio ​  .  
𝑑

𝐶

𝑑
𝐵

= 2

Tensile force of the bolt group 

An eccentric tensile load is seen as a mixture of a concentric force 
applied at the geometric centroid of the bolt group, along with a 
moment about the centroid.  

;  (5) 𝑁
𝑡

= 𝑃
𝑛 +

𝑃𝑒𝑦
1

𝑖=1

𝑛

∑ 𝑦
𝑖
2

; 𝑁
𝑡

= 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛 𝑙𝑜𝑎𝑑

;  𝑃 = 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒 
;  𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑙𝑡𝑠

;  𝑦
𝑖

= 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑜𝑙𝑡 𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

 𝑖 = 1 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑙𝑡
 

 
Figure 54: Force analysis for (a) sliding gusset connection, (b) 
welded gusset connection (Zhao et al. 2018). 
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Figure 55: treatment of eccentric load on bold group (Zhao et al. 
2018) 
 

; ;   (6) 𝑃
𝐵

= 𝑃
𝐵𝑅𝐵

𝑠𝑖𝑛φ (7) 𝑃
𝑐

= 𝑃
𝐵𝑅𝐵

𝑐𝑜𝑠φ (8) 𝑡𝑎𝑛φ =
𝑋

𝑐
+𝑒

𝑏
+𝑡

𝑏

𝑋
𝑏
+𝑒

𝑐

 𝑋
𝑏
, 𝑋

𝑐
= 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑃

𝑏
, 𝑃

𝑐

, ,𝑒
𝑏
 𝑎𝑛𝑑 𝑒

𝑐
 𝑎𝑟𝑒 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚 𝑑𝑒𝑝𝑡ℎ 𝑡

𝑝 
= 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑎𝑛𝑔𝑒

  Previous research (Cui et ϕ = 𝑏𝑟𝑎𝑐𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 𝑃
𝐵𝑅𝐵

= 𝑏𝑟𝑎𝑐𝑒 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

al. 2012) revealed a 30° dispersion angle for brace force 
transmission in welded corner gusset connections, as depicted in 
Fig. 16(b). In the proposed equivalent force approach, only welds 
within the dispersion range were considered effective (Lb and Lc). 
The authors assumed equivalent forces would act at the effective 
weld centroids parallel to the brace axis, with force values defined 

by the distances between them (db and dc). , (9) 
𝑋

𝑏
−𝑡

𝑝𝑐

𝐿
𝑏
−𝑡

𝑝𝑐
= 𝑓(

𝑑
𝑐

𝑑
𝑏

)

through linear analysis the following can be determined 

,(10)
𝑋

𝑏
−𝑡

𝑝𝑐

𝐿
𝑏
−𝑡

𝑝𝑐
= 0. 3[1 + (

𝑑
𝑐

𝑑
𝑏

)0.5]0.6 

, substitute (11) to (8) (11) 𝑋
𝑏

= 0. 3(𝐿
𝑏

− 𝑡
𝑝𝑐

)(1 +
𝑑

𝑐

𝑑
𝑏

)0.6 + 𝑡
𝑝𝑐

 (12) 𝑋
𝑐

= (𝑒
𝑐

+ 𝑋
𝑏
)𝑡𝑎𝑛φ − (𝑒

𝑏
+ 𝑡

𝑓𝑝
)

 The eccentric equivalent tensile forces were used to calculate the 
critical bolt design force, Nt, in accordance with the 
aforementioned equations. Furthermore, the bolt design was 
constrained to a Nt/P limit of 0.8. The subsequent equations 
establish the lower bound of the gusset plate dimensions.

,  , (13) 𝐿
𝑏

=
𝑃

𝐵𝑅𝐵
𝑐𝑜𝑠φ

0.7𝑡
𝑔
𝑓

𝑣𝑦
(14)𝐿

𝑐
=

𝑃
𝐵𝑅𝐵

𝑠𝑖𝑛φ

0.7𝑡
𝑔
𝑓

𝑣𝑦
φ = 𝑏𝑟𝑎𝑐𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒

,𝑡
𝑔

= 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑔𝑢𝑠𝑠𝑒𝑡 𝑝𝑙𝑎𝑡𝑒 

. Using the same 𝑓
𝑣𝑦

= 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔𝑢𝑠𝑠𝑒𝑡

demand-capacity ratio based on the cross-section and strength of 
the welds, a design examination of the welded connection between 
the gusset plate and end plates is also necessary. 

, , (15) 𝑛
𝑏𝑜𝑙𝑡
𝑏 =

𝑃
𝐵𝑅𝐵

𝑠𝑖𝑛φ

0.6𝑃
𝑏𝑜𝑙𝑡
𝑏 (16) 𝑛

𝑏𝑜𝑙𝑡
𝑐 =

𝑃
𝐵𝑅𝐵

𝑐𝑜𝑠φ

0.6𝑃
𝑏𝑜𝑙𝑡
𝑐

, 𝑛
𝑏𝑜𝑙𝑡
𝑏  𝑎𝑛𝑑 𝑛

𝑏𝑜𝑙𝑡
𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑙𝑡𝑠 𝑖𝑛 𝑎 𝑏𝑒𝑎𝑚 𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛

The arrangement of bolts can be 𝑃
𝑏𝑜𝑙𝑡
𝑏 𝑎𝑛𝑑 𝑃

𝑏𝑜𝑙𝑡
𝑐 = 𝑝𝑟𝑒𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒𝑠 

used to modify the size of the gusset plate. To re-evaluate the 

bolts, ,  since (17) 
𝑁

𝑡
𝑏

𝑃
𝑏𝑜𝑙𝑡
𝑏 ≤ 0. 8 (18) 

𝑁
𝑡
𝑐

𝑃
𝑏𝑜𝑙𝑡
𝑐 ≤ 0. 8

 𝑁
𝑡
𝑏 𝑎𝑛𝑑 𝑁

𝑡
𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑏𝑜𝑙𝑡𝑠 

Gusset Design  

 

 
Figure 56: Steel bridge truss frame common types (Astaneh-Asl 
1998) 

 
Figure 57: Cantilever warren truss with hanger and suspended 
Mid-Span (Astaneh-Asl 1998) 
 

 
Figure 58: Continuous warren deck truss, E where expansion is 
allowed F for fixed when expansion is not allowed.  
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Figure 59: Axial load not necessarily representing the direction of 
forces for common types of gusset plates in steel bridge 
trusses(Astaneh-Asl ) .  
  
 
The primary means by which trusses resist bending and shear are 
the axial strength and rigidity of their members, which are a result 
of their triangular geometry. The whole behavior of the gusset 
plates, which are the members and connections of a truss, 
determines its overall behavior. The failure modes of a truss are 
identical to those of its members and gusset plate connections. A 
truss may fail in a global buckling mode as a result of a lack of 
lateral reinforcement for its compression chord, in addition to the 
failure of its members and/or connections. This discussion, which 
is concentrated on the steel truss superstructure of the bridge. 
 
According to research conducted for a conventional truss by 
(Astaneh-Asl n.d.), inadequate lateral bracing at the truss nodes 
may lead to buckling of the compression chord and potential 
out-of-plane displacement of the tension chord due to node 
instability. The buckling of the compression chord, illustrated in 
Figure 57, may transpire when the lateral bracing lacks sufficient 
strength or stiffness to prevent the truss nodes, specifically the 
gusset plates, from displacing laterally out of plane. The deck 
structure and the lateral bracing system connect the two parallel 
main trusses that typically support the gravity load in steel truss 
bridges. The lateral bracing members serve two primary functions:  
(a) to function as web members of a horizontal truss, countering 
horizontal wind and seismic forces, while the chords of the main 
trusses serve as chord members, and (b) to provide a lateral 
bracing system for the main trusses, stabilizing the panel points 
(gusset plates) of these trusses against out-of-plane movement, 
thereby averting global buckling of the truss chords. 
 
The primary failure modes of a steel truss are enumerated below: 
a. Global instability resulting in truss failure  
b. Failure of truss components  
c. Failure of truss connections, including gusset plates, splices, and 
supports (e.g., bearings) 
 

 
Figure 60: Illustration of failure modes. 
 

 
Figure 61: Force reactions inside the structure due to applied load. 
 
To comprehend the reasons for the out-of-plane movement of the 
tension chord, we will examine the straightforward deck truss 
depicted in Figure 61 (a). The illustration additionally depicts the 
axial stresses inside the members, with the bottom chord ADC 
experiencing tension and the top chord ABC undergoing 
compression. 
At points A, B, and C, the truss joints are stabilized against lateral 
movement by the deck and its transverse beams. Point D, on the 
other hand, does not have a brace that would stop it from moving 
laterally out of the truss's plane. It is evident that member BD is a 
compressive member. Member BD experiences an increase in axial 
compression as the applied load P rises. Due to the lack of bracing 
at point D (Figure 61 (b)), member BD can bend in a rigid body 
mode, forcing the tension chord ADC out of the plane of the truss 
and displacing point D to point D'. This phenomena was 
investigated by (Winter 1960) and subsequently by Yura and his 
research collaborators (Yura 1995) about the out-of-plane 
movement of the bottom tension flange of plate girders. To 
prevent this failure mechanism, Yura presented equations for 
designing enough lateral bracing. The AISC Specifications now 
contain the equations (Design 2005). 
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Design Evaluations  

Forces acting on the gusset plate:  

Based on (Aashto 1998): , as  (1) Σ𝑛
𝑖
𝑌

𝑖
𝑄

𝑖
≤ ϕ𝑅

𝑛
= 𝑅

𝑟
(2) 𝑛

𝑖
= 𝑛

𝐷
𝑛

𝑅
𝑛

𝐼

load modifier factor in relation to the component's ductility, 
redundancy, and operational relevance, as well as the bridge itself 

a load factor that is based on statistics and applied to force 𝑌
𝑖

=

effects,  force effects (e.g., shear, bending moment) in the 𝑄
𝑖

=

member.  since  The nominal resistance ϕ = 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑅
𝑛

=

of a component when designing for a specific failure mode.  𝑅
𝑟

=

factor resistance.  
 
 For strength limit state ductility  

 𝑛
𝐷

 for non ductile connection components  ≥  1. 05
  Ductile strength limits include yielding of gross ≥ 1. 00

or holed sections under tension or compression, and 
critical gusset plate sections under bending moment, 
axial force, and shear. 

 for conventional design  = 1. 00 
  for components and connections for which ≥ 0. 95

additional ductility-enhancing  
 𝑛

𝐷
 = 1. 0

 
 
 Strength limit state redundancy  

 𝑛
𝑅

 for non redundant members  ≥  1. 05
 for conventional design r = 1. 00 
  for components and connections for which ≥ 0. 95

additional ductility-enhancing  
 𝑛

𝑅
 = 1. 0

 
 
 Strength limit state operational 

 
 𝑛

𝐼
 for high traffic load  ≥  1. 05

 for typical design = 1. 00 
  for lower load  ≥ 0. 95

 𝑛
𝐼

 = 1. 0

 

Strength Limit State  𝑛
𝐷

 𝑛
𝑅

 𝑛
𝐼

 𝑛
𝑖

= 𝑛
𝐷

𝑛
𝑅

𝑛
𝐼

Gross area of steel 
yield  

1 1.05 1.0 1.05 

NEt area steel fracture  1.05 1.05 1.0 1.10 
Gusset plate buckling  1.05 1.05 1.0 1.10 
Block shear failure  1.05 1.05 1.0 1.10 
Fracture of rivets, 
bolts or welds 

1.05 1.05 1.0 1.10 

Bearing failure of 
bolts 

1.05 1.05 1.0 1.10 

Table 7:  strength limit state of bolts in a gusset and structural member 
(Astaneh-Asl ) 
 

, (3) (ϕ𝑅
𝑛
)

𝐶𝑜𝑛𝑛
≥

(Σ𝑛
𝑖
𝑦

𝑖
𝑄

𝑖
)

𝑚𝑒𝑚𝑏𝑒𝑟
+𝑛

𝑖
(ϕ𝑅

𝑛
)

𝑚𝑒𝑚𝑏𝑒𝑟 

2 + 0. 75𝑛
𝑖
(ϕ𝑅

𝑛
)

𝑚𝑒𝑚𝑏𝑒𝑟{ }
the full strength design recommendation can be written as 

.  (4) (ϕ𝑅
𝑛
)

𝑀𝑒𝑚𝑏𝑒𝑟
≥ 𝑛

𝑖
(ϕ𝑅

𝑛
)

𝑀𝑒𝑚𝑏𝑒𝑟

Failure modes of the gusset connections include: 
 
1. Yield on the gross section under tension 
2. Tension-induced fracture in the net section 
3. General buckling of compression members 
4. Local buckling in compression zones 
 
When a chord member splice is situated within the gusset plate 
connection, the stresses in the gusset plate may significantly 
exceed those in instances where the chord member continuously 
traverses the gusset plates, leading to comparatively minimal 
forces transmitted to the gusset plate. 

 
Figure 62:  showing location of splice plate (Astaneh-Asl ).  
 
Regarding the thickness of gusset plates, the (Aashto 1998) 
standard specifies a minimum thickness of 9.5 mm . Other 
literature sources mention a minimum thickness of 12.7 mm.  
(Bresler & Lin 1960) recommend a gusset plate thickness ranging 
from 9.5 mm to 12.7 mm for light trusses, and from 15.9 mm to 22.2 
mm for heavier trusses, although they do not clarify the criteria 
for distinguishing between “light” and “heavy” trusses. The 
provision aims to ensure that the maximum normal stress 
resulting from the combination of bending and axial normal 
stresses at any location within the gusset plate does not surpass 
the yield stress. , where  Bending moment (5) σ

𝑏
= 𝑀

𝑆
𝑥

𝑀 =  (𝑁. 𝑚𝑚)

acting on cross section, , elastic modulus of the cross 𝑆
𝑥

=  𝑚𝑚3 

section  Bending stress. , σ
𝑏

= 𝑁/𝑚𝑚 = 𝑀𝑃𝑎 (6) τ
𝑚𝑎𝑥

< ϕ
𝑣
𝐹

𝑦
/ 3

 specified minimum yield stress of (7) τ
𝑎𝑙𝑙𝑜𝑤

< (ϕ
𝑣
)(0. 74𝐹

𝑦
/ 3) 𝐹

𝑦
=

steel for the sear area to be the gross area.  specified ultimate 𝐹
𝑢

=

strength of steel if the net area is the intended area. . 𝐴
𝑛

= 𝐴
𝑔

− 𝐴
𝑏

The length of the unsupported edge of a gusset plate:  
, since  modulus of elasticity of (8) 𝐿 < 2. 06(𝐸/𝐹

𝑦
)1/2 × 𝑡

𝑔
𝐸 = 𝑀𝑃𝑎

steel, specified minimum yield stress of steel  and 𝐹
𝑦

= 𝑀𝑃𝑎 

 thickness of gusset.  𝑡
𝑔

= 𝑚𝑚

 

Mechanical 
performance of 
high steel plate 

HPS 50W, up to 100 
mm As-Rolled 

HPS 70W up to 100 
mm, 50 mm   
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Yield Strength, 
 𝐹

𝑦
(𝑀𝑃𝑎)

345 485 

Ultimate tensile 
strength  𝐹

 𝑢

485 585-760 

Table 8: Steel strength mechanical performance  (Vermes 2007) 

 

Properties of 
Steel Riveted 
bridges  

Carbon Steel Silicon Steel  Nickel Steel  

Yield 
Strength, 

 𝐹
𝑦
(𝑀𝑃𝑎)

33-36 48-50 48-50 

Ultimate 
tensile 
strength  𝐹

 𝑢

60-70 80-95 85-100 

Allowable 
stress in 
tension  𝐹

𝑎

16-18 24-27 27-33 

Table 9: Steel strength mechanical performance  (Vermes 2007) 

Shear failure of the rivets or bolts 

 
,  where factored shear (1) 𝑅

𝑟
= ϕ𝑅

𝑛
(2)𝑅

𝑟−𝐵𝑜𝑙𝑡
= 𝐵ϕ

𝑏𝑠
𝑅

𝑛𝑏𝑠
𝑅

𝑟−𝐵𝑜𝑙𝑡
=

resistance of bolt group. number of bolts in group,  Σ = ϕ
𝑏𝑠

= 0. 8

resistance factor,  nominal shear strength of a single bolt in a 𝑅
𝑛𝑏𝑠

=

group connecting the member to the gusset plate. The bolts will 
slip and bear against the hole wall at a certain point when they are 
subjected to shear, depending on the degree of pre-tensioning. 
Friction at the faying surfaces transfers shear until slippage 
happens. The primary shear transfer mechanism occurs through 
the bearing compression of the bolt against the hole wall resulting 
from slippage. In standard civil engineering applications (Aashto 
2003), bolts are typically of high strength, and the connected 
components are occasionally also of high strength.  

 
Figure 63: Deformation of the Whitmore section of a gusset plate 
 
Strength limit state check :  

,since ,  know (3) 𝑛
𝑖
(ϕ𝑅

𝑛
)𝑀𝑒𝑚𝑏𝑒𝑟 ≤ ϕ

𝑦
𝑅

𝑛𝑊
 ϕ

𝑦
= 0. 95 (4) 𝑅

𝑛𝑊
= 𝐴

𝑔𝑊
𝐹

𝑦

as nominal yield strength   for gross area of the (5) 𝐴
𝑔𝑊

= (𝑊)(𝑡
𝑔
)

gusset since  width of the whitmore section  specified 𝑊 = 𝐹
𝑦𝑔

=

minimum yield strength of the gusset plate.  To create the 
Whitmore section, as seen in the above figure, two 30-degree lines 
are drawn from the center of the last bolts to intersect a line that is 
perpendicular to the member's axis and passes through the first 
bolt line. The region of the gusset plate situated between the two 
30-degree lines is regarded as the gross area of Whitmore's 
section. The yielding of the Whitmore section of a gusset plate 
represents the most preferable mode of failure. 

Fracture of a whitmore section 
 
If the member force is a tension force, as demonstrated, the 
Whitmore section's "net area" may fracture.(Bjorhovde & 
Chakrabarti 1985). The net section of the gusset plate through the 
last bolt line could become quite weak and this failure mode could 
become dominant in riveted and bolted bridge gusset plates, 
particularly with angles connecting the members to the gussets in 
riveted bridges. 

 
Figure 64: Tension fracture of whitmore gusset.  
 

,  the nominal ultimate strength (1) 𝑛
𝑖
(ϕ𝑅

𝑛
)

𝑚𝑒𝑚𝑏𝑒𝑟
≤ ϕ𝑅

𝑛𝑊𝑢
ϕ

𝑢
= 0. 8

of section subjected to direct axial tension , as (2) 𝑅
𝑛𝑊𝑢

= 𝐴
𝑛𝑊

𝐹
𝑢𝑔

 , 𝐴
𝑛𝑊

= 𝑛𝑒𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑢𝑠𝑠𝑒𝑡 𝑝𝑙𝑎𝑡𝑒 (3) 𝐴
ℎ𝑜𝑙𝑒𝑠

= Σ
ℎ𝑜𝑙𝑒𝑠

π(𝑑
𝑏𝑜𝑙𝑡

+1.58 𝑚𝑚)2

4

The nominal shear strength of the bolt group connecting to the 
gusset plate: ,  ultimate (4) 𝑅

𝑛𝑏𝑠
= 0. 58𝐹

𝑦
𝐴

𝑣𝑔
+ 𝐹

𝑢
𝐴

𝑡𝑔
𝐹

𝑢 
𝑎𝑛𝑑 𝐹

𝑦
=

stress and yield stress.  
 

Block shear failure of a Gusset 

 
Figure 67: typical black shear failure and incomplete block shear 
failure  
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, as (5) 𝑅
𝑛𝑏𝑠

= 0. 58𝐹
𝑦
𝐴

𝑣𝑔
+ 𝐹

𝑢
𝐴

𝑡𝑔
𝐴

𝑣𝑔
= 𝑔𝑟𝑜𝑠𝑠 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑠ℎ𝑒𝑎𝑟 = (𝐿)(𝑡)  

and  (Williams & Richard 1996).  𝐴
𝑡𝑔

= 𝑔𝑟𝑜𝑠𝑠 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = (𝑠)(𝑡)

 
Figure 68: Definition of L and s (Williams 1986).  
 
If , otherwise (6) 𝐴

𝑛𝑡
≥ 0. 6𝐴

𝑣𝑛
:  𝑅

𝑛𝑏𝑠
= 0. 6𝑅

𝑦
𝑓

𝑦
+ 𝐹

𝑢
𝐴

𝑡𝑛

 (7) 𝑅
𝑛𝑏𝑠

= 0. 6𝐹
𝑢
𝐴

𝑣𝑛
+ 𝑅

𝑦
𝐹

𝑦
𝐴

𝑡𝑔 

nominal block shear resistance,  gross area of the 𝑅
𝑛𝑏𝑠

= (𝑃𝑎) 𝐴
𝑣𝑔

=

plane resisting shear,  
 net area along the plane resisting tension stress,  Net 𝐴

𝑡𝑛
= 𝐴

𝑣𝑛
=

area along the plane resisting shear stress, gross area of the 𝐴
𝑡𝑔

=  

lane resisting tension stress. (Astaneh-Asl et al. 1998). 

 
Figure 69 : Failure modes of shear yielding and tension fractures  
 

, (Kulak & Grondin 2001). (8) 𝑅
𝑛𝑏𝑠

= 0. 6𝐹
𝑦
𝐴

𝑣𝑔
+ 𝐹

𝑢
𝐴

𝑡𝑛

as , the nominal block (9) 𝑛
𝑖
(ϕ𝑅

𝑛
)

𝑚𝑒𝑚𝑏𝑒𝑟
≤ ϕ

𝑏𝑠
𝑅

𝑛𝑏𝑠 
ϕ

𝑏𝑠
= 0. 8 𝑅

𝑛𝑏𝑠
=  

shear strength pertaining to the axial tension of the gusset plate: if 
 or (10) 𝐴

𝑡𝑛
≥ 0. 58𝐴

𝑣𝑛 
 𝑢𝑠𝑒 (11) 𝑅

𝑟
= ϕ

𝑏𝑠
(0. 58𝐹

𝑦
𝐴

𝑣𝑔
+ 𝐹

𝑢
𝐴

𝑡𝑛
)

 ,  specified minimum (12) 𝑅
𝑟

= ϕ
𝑏𝑠

(0. 58𝐹
𝑢
𝐴

𝑣𝑛
+ 𝐹

𝑦
𝐴

𝑡𝑔
) 𝐹

𝑦
=  (𝑀𝑃𝑎) 

yield strength of the connected material and minimum 𝐹
𝑢

=  

tensile strength of the connected materials specified in the 
following table:  gross area along the plane resisting 𝐴

𝑣𝑔
=  𝑚𝑚2,

shear  net area along the plane resisting shear stress 𝐴
𝑣𝑛

=

.  (13) 𝐴
𝑣𝑛

= 𝐴
𝑣𝑔

− (𝐴
ℎ𝑜𝑙𝑒𝑠

+ Σ
ℎ𝑜𝑙𝑒𝑠

( 𝑆2

4𝑔 )(𝑡))

 
Figure 70:  irregular block failure from I section acting on gusset 
 
The application of regulations concerning "staggered" holes in the 
net area of tension members and the incorporation of the term 

 not to include in block shear failure scenarios involving ( 𝑆2

4𝑔 )(𝑡)

inclined "staggered" surfaces that are neither parallel nor 
perpendicular to the tension line of action.  
 

 
Table: Minimum mechanical properties of structural steel by 
shape (Astaneh-Asl ). 
 
Consider the block shear fracture path depicted as 'abcdef' in 
Figure 71. This irregular failure line can be broken down into 
segments based on their orientation to the applied tensile force: 

1.​ Shear Areas: Segments like 'bc' that run parallel to the 
tensile force are subjected to shear stress. 
2.​ Tension Areas: Segments such as 'de', which are 
perpendicular to the tensile force, experience direct tension. 
3.​ Inclined Areas: Segments like 'ab', 'cd', and 'ef' are angled 
relative to the tensile force and are treated similarly to staggered 
bolt patterns in net section calculations. These inclined areas are 
also under tension. When calculating their net area, an additional 
term,  , is included for each inclined segment. Here, 's' is the (𝑠2/4𝑔)𝑡
length measured parallel to the tensile force, 'g' is the length 
perpendicular to it, and 't' represents the thickness of the material. 
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Figure 71: Irregular block shear failure line dimensions  
 

Buckling of Gusset failure 

In order to ascertain the buckling capacity of a gusset plate under 
direct compression (Dowswell 2006), (Astaneh-Asl 1998), one may 
employ Whitmore’s effective width, as illustrated in the 
accompanying figure. The subsequent equation is proposed for the 
limit state concerning the buckling of the gusset plate. 
This mode of failure is classified as a non-ductile failure mode. 
 

 
Figure 72 : Gusset plate buckling mechanism  
 

, since , (1) 𝑛
𝑖
(ϕ𝑅

𝑛
)

𝑚𝑒𝑚𝑏𝑒𝑟
≤ ϕ

𝑐
𝑅

𝑛𝑐
ϕ

𝑐
= 0. 9

 from column 𝑅
𝑛𝑐

=  𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑢𝑠𝑠𝑒𝑡

equations  𝑅
𝑛𝑐

= 𝐴
𝑛𝑐

𝐹
𝑦

 

 
Figure 73 compression areas of the gusset causing buckling, with 
two adjacent truss members are in compression 
 
The gusset of the vertical element and the horizontal I section of 
hot-rolled steel are subjected to shear, normal axial  forces and 
stresses. 
 
The following forces are :  

, (2) 𝑉 = τ(𝐿)(𝑡) = σ
𝑣
(𝐿)(𝑡)𝑠𝑖𝑛θ𝑐𝑜𝑠θ

, and for the following (3)𝑁 = σ(𝐿)(𝑡) = σ
𝑑
(𝐿)(𝑡) + σ

𝑣
(𝐿)(𝑡)𝑠𝑖𝑛2θ

stresses can be concluded as: , (4) τ = σ
𝑣
𝑠𝑖𝑛θ𝑐𝑜𝑠θ (5)σ = σ

𝑑
+ σ

𝑣
𝑠𝑖𝑛2θ

. The von Mises criterion can be employed to combine the normal 
and shear stresses acting on the inclined section. The von Mises 
stress can then be used as the applied normal stress to be 
compared to the critical buckling stress of the strip, as shown 

below: .  (6) σ
𝑣𝑀

= σ2 + 3τ2

 
The gusset plate was analyzed using the three methods mentioned 
above to determine the von Mises stresses at each nodal point, as 
illustrated in the following figure. First, the normal stress σ and 
shear stress τ were determined for each node point on the gusset 
plate in order to establish von Mises stress. Subsequently, these 
stresses were combined using equation (6). The results of the 
analysis using the proposed Finite Element Methods (FEM) 
method are sufficiently accurate for design office applications, 
whereas the results obtained by applying the Beam Theory are 
significantly off. 
 
 

and 1 𝑘𝑖𝑝𝑠 = 4. 45 𝑘𝑁 1" = 25. 4 𝑚𝑚 

 
Figure 74: von mises stress in a gusset plate distribution 
(Astaneh-Asl 2008). 

In this case, the gusset plate was analyzed using three methods: (1) 
the Finite Element Method (FEM), (2) the simplified method 
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proposed by Astaneh-Asl, and (3) the Beam Theory approach. 
Figure  presents the von Mises stresses calculated at each nodal 
point using these three methods. As shown in the figure, the von 
Mises stresses obtained from FEM and the author's simplified 
method are closely aligned, making both suitable for practical 
design applications. In contrast, the stresses derived using Beam 
Theory deviate significantly. 

Specifically, the von Mises stresses from the Beam 
Theory—represented as the third value at each nodal point—are 
considerably lower than those estimated by FEM (first value) and 
Astaneh-Asl’s method (second value), which better reflect realistic 
stress conditions. For instance, at Node “C,” one of the most highly 
stressed locations on the gusset plate, the von Mises stresses are 
132.3 MPa using FEM, 135.1 MPa using Astaneh-Asl’s method, and 
only 45.5 MPa using the Beam Theory.  

 
Figure 75: A comparison of von Mises stresses in a bracing system 
plate in three different methods (Astaneh-Asl ).  

Buckling of Free Edges of the Gusset Plates  
The free edges of the gusset plate may buckle due to the 
compressive stresses exerted by a compression member connected 
to the gusset plate. The distinction between edge buckling of 
gusset plates and buckling of the inner sections remains 
ambiguous, as does the efficacy of designing a gusset plate for the 
buckling limit state in preventing edge buckling, a topic 
extensively summarized by(Chambers & Ernst 2005). Thus, the 
two buckling modes are examined independently, and both limit 
states are confirmed. This section primarily focuses on edge 
buckling. 
 

 
Figure 76: edge buckling of the gusset plate (Astaneh-Asl ) 
 
(Aashto 2003) determined that the maximum of unsupported 

length of a gusset can be expressed as: , free (1)
𝐿

𝑓𝑔

𝑡
𝑔

≤ 2. 06 𝐸
𝑓

𝑦
𝐿

𝑓𝑔
=

length of the gusset calculated for vertical and horizontal , 𝐸 =
modulus of elasticity of steel and  specified minimum 𝑓

𝑦
=  𝑀𝑃𝑎 

yield of steel. While (Vermes 2007) determined the outcomes of 
compressive gusset plate examinations and evaluations of edge 
buckling. The study proposed a formula to avert edge buckling 

before gusset yielding occurs. .  (2) 
𝐿

𝑓𝑔

𝑡
𝑔

≤ 0. 85 𝐸
𝐹

𝑦

 
Figure 77: Slenderness comparison through the variation of 
buckling (Astaneh-Asl 1998).  
 
(Astaneh-Asl n.d.) proposed based on the following test results that 
the following slenderness should be considered as 

.  (3)
𝐿

𝑓𝑔

𝑡
𝑔

≤ 0. 75 𝐸
𝐹

𝑦

Yielding of Critical Sections of Gusset Plates in the 
Presence of Combined Stresses 
(Whitmore 1950)  tests were designed to determine the actual 
stresses in the gusset plates and to contrast them with those 
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determined through beam theory. He concluded that while beam 
theory reasonably accurately predicted the maximum stresses, it 
did not accurately predict the location where they occurred.Since 
the inception of steel truss bridge design, the failure of critical 
sections of gusset plates has been recognized.The following 
interaction equation was used to establish normal stresses by 
linearly adding normal stresses resulting from axial force and 
bending.The calculation of shear stresses was executed by dividing 
the shear force exerted on a critical section of the gusset plate by 
the product of the section's length and its thickness. To put it 
differently, shear stresses were characterized as "uniform" 
stresses. 
 

,  (1) σ
𝑚𝑎𝑥

= 𝑁
𝐿𝑡 + 𝑀𝑐

𝐼 ≤ σ
𝑎𝑙𝑙𝑜𝑤

 (𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠) (2)τ
𝑚𝑎𝑥 

= 𝑉
𝐿𝑡 ≤ τ

𝑎𝑙𝑙𝑜𝑤

The stress distribution in the critical sections of gusset plates that 
are subjected to combined loads is not comparable to the stress 
distribution in beams. In beams, the normal stresses are typically 
at their highest at the extreme fibers that are distant from the 
neutral axis, while shear stresses are at their highest on the 
neutral axis (Goel 1986). 
 
The following interaction equation was used to linearly add the 
normal stresses due to axial force and bending in order to establish 
the normal stresses. 
The shear stresses were determined by dividing the shear force 
acting on a critical section of the gusset plate by the length of the 
section and its thickness. Shear stresses were considered 
“uniform” in nature. 

 Normal stress acting on the critical section σ
𝑚𝑎𝑥

=  𝑀𝑃𝑎 =  𝑁/𝑚𝑚2 

of the gusset plate. Axial force acting on the critical section 𝑁 = 𝑁 
of the gusset  bending moment   distance from 𝑀 = 𝑘𝑁𝑚 𝑐 = 𝑚𝑚

extreme fiber of the gusset plate,  neutral axis.  𝑡/2 = 𝐼 = 𝑡𝐿3

12

Shear stress. The von-Mises combined or effective stress τ = 𝑀𝑃𝑎  
is not utilized by (Blodgett 1966). Instead, principal stresses are 
employed. In machine design, Blodgett's approach is 
predominantly employed when fatigue is a factor. U.S. standard 
practice in gusset design does not typically include this feature. In 
the event that combined stresses are ultimately chosen, the 
interaction equation from (Neal 1977) (Astaneh-Asl 1998) that 
employs M, N, and V is the most logical method. (Timoshenko 
1955) for each critical element, the principal stress is determined. 
The maximum principal stress is the greater of the principal 
stresses acting on critical elements of a critical section of the 

gusset plate: .  (3) σ
1,2

=
σ

𝑥
+σ

𝑦

2 ± (
σ

𝑥
−σ

𝑦

2 )2 + τ2

However (Holt & Hartmann 2008) recommended to calculate the 
principal stresses, two elements on the critical section of the 
gusset plate are considered to be the critical elements. The two 
critical elements depicted in Figure below are as follows: (a) 
Element "A" on the neutral axis, where shear stress is at its highest, 
and Element "B" on the extreme fiber (i.e. edge) of the gusset plate, 
where bending stresses are at their highest but shear stress is at its 
lowest. The "maximum" principal stress acting on the critical 
section of the gusset plate is subsequently determined by selecting 

the larger value of principal stress calculated for these two 
elements.  
 

 
Figure 78: Factors to be evaluated in determining maximum 
principal stress  (Astaneh-Asl ). 
 
Gusset plates in bridges cannot be plastified (Imbsen 2009). For 
trusses subjected to significant seismic forces, such as the 
stiffening trusses of suspension bridges, dual design criteria are 
necessary. One criterion, permitting the plastification of the gusset 
plate as delineated in Equation below, should be employed for 
seismic design; the alternative criterion, as specified in the current 
Specifications and further elaborated upon in this section, which 
prohibits gusset plate plastification, should be utilized for the 
design of gusset plates under non-seismic loads. 
 

 (4) ( 𝑁
ϕ

𝑢
𝑁

𝑢
)

2
+ ( 𝑀

ϕ
𝑢
𝑀

𝑢
)1 + ( 𝑉

ϕ
𝑢
𝑉

𝑢
)4 ≤ 1. 0

 
Figure 79: Critical sections of the gusset plate fracture due to the 
combined forces of shear, axial, and bending moments 
(Astaneh-Asl ). 
 

,  Nominal axial force acting on the gusset from 𝑠𝑖𝑛𝑐𝑒 ϕ = 0. 9 𝑁 =
the members action load on the bolts of a member , = 𝑛

𝑖
(ϕ𝑅

𝑛
)

𝑚𝑒𝑚𝑏𝑒𝑟

 shear force acting on gusset ,  tensile fracture 𝑉 = 𝑁
𝑢

= 𝐴
𝑛
𝐹

𝑢

strength in net area,  ultimate moment capacity, 𝑀
𝑢

= 𝑍
𝑥−𝑛𝑒𝑡

𝐹
𝑢

ultimate shear capacity and section modulus 𝑉
𝑢

= 𝐴
𝑛
0. 58𝐹

𝑢
𝑍

𝑥−𝑛𝑒𝑡
=

of the neat area of the critical section of the gusset plate under 
applied load. 
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Conclusion  
This study integrates fundamental principles, empirical findings, 
and innovative techniques to enhance safety, durability, and 
efficiency in modern bridge engineering. Future work should 
prioritize real-time monitoring, intelligent adjustment systems, 
and performance-based design methodologies. 
 
Deep beam shear strength was the focus of this investigation. The 
Cracking Strut-Tie-Model (CSTM) was created by combining the 
STM concept with experimental and finite element analysis data. 
Below is a summary of the proposed CSTM's characteristics and 
benefits. 
  
A building's structural steel model is not subjected to high traffic 
loads on a suspended foundation, gusset frames are different from 
those used in buildings, even though they can be used and 
modeled as an I section. In the design section, the mechanical 
behavior of bolts in the Rn member is very important because the 
quantity of drilled bolts affects the section's strength and ability to 
withstand high torsional stresses; for this reason, plates are used. 

Truss Collapse and Gusset Plate Behavior Historical failures like the 
I-35W bridge collapse underscore the need for robust gusset plate 
design. This paper analyzes gusset performance under combined 
stresses and proposes enhancements using FEM and analytical 
methods. Yielding, buckling, and block shear are assessed using 
current LRFD guidelines and experimental data. 

Structural Optimization and Cable Force Coordination Optimization 
techniques address both vertical deck deflections and pylon bending 
moments. Design variables include the number of panels, cable 
anchor spacing (dx), and erection methodology (temporary supports 
or cantilever). Proper coordination ensures uniform stress 
distribution, improving cable longevity and girder efficiency. 

Cable-stayed bridge design continues to evolve with advances in 
material science, computational modeling, and structural analysis. 
This study integrates fundamental principles, empirical findings, 
and innovative techniques to enhance safety, durability, and 
efficiency in modern bridge engineering. Future work should 
prioritize real-time monitoring, intelligent adjustment systems, 
and performance-based design methodologies. 

Additional research and design analysis are necessary for specific 
case measurements, as the design for large span bridges with truss 
frames cannot yet be finalized. The evidence is insufficient to 
determine whether a truss frame is more suitable for fan-shaped 
cables or suspension. Additional research is necessary to refine 
module analysis for individual cable post-tension anchorage 
connections to the main girder and to optimize for earthquake and 
wind effects. However, accuracy is contingent upon surveying 
during construction; the larger the scale, the greater the likelihood 
of errors, which can excessively stress the damper. 

Disclaimer  

This report is a research project that has been prepared on behalf of 
Ahmad Samadi  in accordance with the terms and conditions of 
Building & Infrastructure Pty Ltd (ACN 669 776 845). Engineering 
Building & Infrastructure cannot be held responsible for any use of, or 
reliance on its contents by any third party. 

The comments and recommendations in this report are derived from 
our visual observations and our analytical expertise in dealing with 
similar matters previously. Unless stated otherwise, no invasive 
enquiries were conducted. 
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